【題目】如圖,在平面直角坐標(biāo)系中,將一個圖形繞原點(diǎn)順時針方向旋轉(zhuǎn)稱為一次“直角旋轉(zhuǎn),已知的三個頂點(diǎn)的坐標(biāo)分別為,,,完成下列任務(wù):
(1)畫出經(jīng)過一次直角旋轉(zhuǎn)后得到的;
(2)若點(diǎn)是內(nèi)部的任意一點(diǎn),將連續(xù)做次“直角旋轉(zhuǎn)”(為正整數(shù)),點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)為,則的最小值為 ;此時,與的位置關(guān)系為 .
(3)求出點(diǎn)旋轉(zhuǎn)到點(diǎn)所經(jīng)過的路徑長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)為AC邊中點(diǎn),動點(diǎn)從點(diǎn)出發(fā),沿著的路徑以每秒1個單位長度的速度運(yùn)動到點(diǎn),在此過程中線段的長度隨著運(yùn)動時間變化的函數(shù)關(guān)系如圖2所示,則邊的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的邊在軸的正半軸上,,反比例函數(shù)()的圖象經(jīng)過點(diǎn).
(1)求反比例函數(shù)的關(guān)系式和點(diǎn)的坐標(biāo),
(2)過的中點(diǎn)作軸交反比例函數(shù)圖象于點(diǎn),連接.求△的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在RtΔABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB邊上一點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),DE的延長線交⊙O于點(diǎn)G,DF⊥DG,且交BC于點(diǎn)F.
(1)求證:AE=BF;
(2)連接EF,求證:∠FEB=∠GDA;
(3)連接GF,若AE=2,EB=4,求ΔGFD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象如圖,下列結(jié)論:①;②;③當(dāng)時,;④;⑤若,且,.其中正確的結(jié)論的個數(shù)有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線與軸交于點(diǎn)、,與軸交于點(diǎn),點(diǎn)的坐標(biāo)為.的半徑為2,是上的一動點(diǎn),點(diǎn)是的中點(diǎn),則最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0;②a-b+c<0;③2a=b;④4a+2b+c>0;⑤若點(diǎn)(-2,y1)和(-,y2)在該圖象上,則y1>y2. 其中正確的結(jié)論個數(shù)是 ( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界衛(wèi)生組織通報說,沙特阿拉伯報告新增5例中東呼吸系統(tǒng)綜合征冠狀病毒(新型冠狀病毒)確診病例.全球新型冠狀病毒確診病例已達(dá)176例,其中死亡74例.冠狀病毒顆粒的直徑60-200nm,平均直徑為100nm,新型冠狀病毒直徑為178nm,呈球形或橢圓形,具有多形性.如果1nm=10-9米,那么新型冠狀病毒的半徑約為( )米
A.1.00×10-7B.1.78×10-7C.8.90×10-8D.5.00×10-8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是半徑為1的圓O直徑,C是圓上一點(diǎn),D是BC延長線上一點(diǎn),過點(diǎn)D的直線交AC于E點(diǎn),且△AEF為等邊三角形.
(1)求證:△DFB是等腰三角形;
(2)若DA=AF,求證:CF⊥AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com