【題目】如圖,在四邊形ABCD中,EAB的中點(diǎn),AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時(shí),求CD的長.

【答案】(1)證明見解析;(2)CD =3

【解析】分析: (1)根據(jù)二直線平行同位角相等得出∠A=BEC,根據(jù)中點(diǎn)的定義得出AE=BE,然后由ASA判斷出△AED≌△EBC;

(2)根據(jù)全等三角形對應(yīng)邊相等得出AD=EC,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形得出四邊形AECD是平行四邊形,根據(jù)平行四邊形的對邊相等得出答案.

詳解:

(1)證明ADEC

∴∠A=BEC

EAB中點(diǎn),

AE=BE

∵∠AED=B

∴△AED≌△EBC

(2)解∵△AED≌△EBC

AD=EC

ADEC

∴四邊形AECD是平行四邊形

CD=AE

AB=6

CD= AB=3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級320名學(xué)生在電腦培訓(xùn)前后各參加了一次水平相同的考試,考試成績都以統(tǒng)一標(biāo)準(zhǔn)劃分成不及格”“及格優(yōu)秀三個(gè)等級.為了解電腦培訓(xùn)的效果,用抽簽方式得到其中32名學(xué)生培訓(xùn)前后兩次成績的等級,并繪制成如圖所示的統(tǒng)計(jì)圖,請結(jié)合圖中信息估計(jì)該校整個(gè)八年級學(xué)生中,培訓(xùn)后考試成績的等級為及格優(yōu)秀的學(xué)生共有______名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】榮慶公司計(jì)劃從商店購買同一品牌的臺燈和手電筒,已知購買一個(gè)臺燈比購買一個(gè)手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個(gè)數(shù)是購買手電筒個(gè)數(shù)的一半.

(1)求購買該品牌一個(gè)臺燈、一個(gè)手電筒各需要多少元?

(2)經(jīng)商談,商店給予榮慶公司購買一個(gè)該品牌臺燈贈送一個(gè)該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個(gè)數(shù)是臺燈個(gè)數(shù)的2倍還多8個(gè),且該公司購買臺燈和手電筒的總費(fèi)用不超過670元,那么榮慶公司最多可購買多少個(gè)該品牌臺燈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是長方體的平面展開圖.

(1)將平面展開圖折疊成一個(gè)長方體,與字母N重合的點(diǎn)有哪幾個(gè)?

(2)若AG=CK=14 cm,F(xiàn)G=2 cm,LK=5 cm,則該長方體的表面積和體積分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,在中,已知,,的平分線交于點(diǎn),求證:是等腰三角形.

2.閱讀下列文字:我們知道,對于一個(gè)圖形,通過兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式.例如由圖1可以得到 .請解答下列問題:

.寫出圖2中所表示的數(shù)學(xué)等式;

②.利用(1)中所得到的結(jié)論,解決下面的問題:已知,求的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙、丙等多家食品公司在某市開設(shè)蛋糕店,該市蛋糕店數(shù)量的扇形統(tǒng)計(jì)圖如圖所示,其中統(tǒng)計(jì)圖中沒有標(biāo)注相應(yīng)公司數(shù)量的百分比.已知乙公司經(jīng)營150家蛋糕店,請根據(jù)該統(tǒng)計(jì)圖回答下列問題:

(1)求甲公司經(jīng)營的蛋糕店數(shù)量和該市蛋糕店的總數(shù);

(2)甲公司為了擴(kuò)大市場占有率,決定在該市增設(shè)蛋糕店數(shù)量達(dá)到全市的20%,求甲公司需要增設(shè)的蛋糕店數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的高,AE△ABC的角平分線,且∠BAC=90°,∠C=2∠B.

求:(1∠B的度數(shù); (2) ∠DAE的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖1,在RtABC中,∠C=90°,∠ABC=30°,點(diǎn)D是邊CB上任意一點(diǎn),△ADE是等邊三角形,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.探究線段BEDE之間的數(shù)量關(guān)系.請你完成下列探究過程:先將圖形特殊化,得出猜想,再對一般情況進(jìn)行分析并加以證明.

1)當(dāng)點(diǎn)D與點(diǎn)C重合時(shí)(如圖2),請你補(bǔ)全圖形.由∠BAC的度數(shù)為 ,點(diǎn)E落在 ______ ,容易得出BEDE之間的數(shù)量關(guān)為 ;

2)當(dāng)點(diǎn)DBC上任意一點(diǎn)(不與點(diǎn)B、C重合)時(shí),結(jié)合圖1,探究(1)中線段BEDE之間的數(shù)量關(guān)系是否還成立?并證明你的結(jié)論.

3)如圖3,若點(diǎn)P為直線BC上一點(diǎn),若△PAB為等腰三角形,請你求出∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為某種材料溫度y(℃)隨時(shí)間xmin)變化的函數(shù)圖象.已知該材料初始溫度為15℃,溫度上升階段y與時(shí)間x成一次函數(shù)關(guān)系,且在第5分鐘溫度達(dá)到最大值60℃后開始下降;溫度下降階段,溫度y與時(shí)間x成反比例關(guān)系.

(1)分別求該材料溫度上升和下降階段,yx間的函數(shù)關(guān)系式;

(2)根據(jù)工藝要求,當(dāng)材料的溫度高于30℃時(shí),可以進(jìn)行產(chǎn)品加工,問可加工多長時(shí)間?

查看答案和解析>>

同步練習(xí)冊答案