【題目】問題:如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,點D是邊CB上任意一點,△ADE是等邊三角形,且點E在∠ACB的內部,連接BE.探究線段BE與DE之間的數量關系.請你完成下列探究過程:先將圖形特殊化,得出猜想,再對一般情況進行分析并加以證明.
(1)當點D與點C重合時(如圖2),請你補全圖形.由∠BAC的度數為 ,點E落在 ______ ,容易得出BE與DE之間的數量關為 ;
(2)當點D是BC上任意一點(不與點B、C重合)時,結合圖1,探究(1)中線段BE與DE之間的數量關系是否還成立?并證明你的結論.
(3)如圖3,若點P為直線BC上一點,若△PAB為等腰三角形,請你求出∠APB的度數.
【答案】(1)60°;AB的中點處;BE=DE;(2)BE=DE依然成立,證明見解析;(3)∠APB的度數為15°或30°或75°或120°.
【解析】
(1)根據題意畫出圖形,由直角三角形及等邊三角形的性質即可得出結論;
(2)根據題意畫出圖形,猜想:BE=DE,取AB的中點F,連接EF,由∠ACB=90°,∠ABC=30°,可知∠1=60°,CF=AF=AB,故△ACF是等邊三角形,再由△ADE是等邊三角形可得出∠CAD=∠FAE,由全等三角形的判定定理可知△ACD≌△AFE,故∠ACD=∠AFE=90°.由F是AB的中點,可知EF是AB的垂直平分線,進而可得出BE=AE,結合DE=AE可得BE=DE;
(3)分三種情況討論:①當AP=AB時,②當BP=AB時,③當AP=BP時,根據等腰三角形的性質以及三角形內角和定理分別計算即可.
解:(1)如圖2,
∵∠C=90°,∠ABC=30°,
∴∠BAC=60°,
∵△ADE是等邊三角形,
∴AE=CE,
∴點E落在AB的中點處;
∴AE=CE=BE=DE,
故答案為:60°;AB的中點處;BE=DE;
(2)BE=DE依然成立.
證明:如圖3.取AB的中點F,連接EF.
∵∠ACB=90°,∠ABC=30°,
∴∠1=60°,CF=AF=AB,
∴△ACF是等邊三角形.
∴AC=AF①,
∵△ADE是等邊三角形,
∴∠2=60°,AD=AE②,
∴∠1=∠2.
∴∠1+∠BAD=∠2+∠BAD,即∠CAD=∠FAE③
由①②③得△ACD≌△AFE(SAS).
∴∠ACD=∠AFE=90°.
∵F是AB的中點,
∴EF是AB的垂直平分線,
∴BE=AE,
∵△ADE是等邊三角形,
∴DE=AE,
∴BE=DE;
(3)如圖4,
∵△PAB為等腰三角形,
∴①當AP=AB時,即:AP1=AB,
∴∠AP1B=∠ABP1=30°;
②當BP=AB時,
Ⅰ、BP2=AB,
∴∠AP2B=(180°∠ABC)=75°,
Ⅱ、BP4=AB,
∴∠BAP4=∠AP4B,
∵∠ABC=30°=∠BAP4+∠AP4B,
∴∠AP4B=15°;
③當AP=BP時,即:AP3=BP3,
∴∠BAP3=∠ABC=30°,
∴∠AP3B=180°∠ABC∠BAP3=120°,
綜上所述,若△PAB為等腰三角形,∠APB的度數為15°或30°或75°或120°.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF.BE與AC相交于點M,與CF相交于點D,AB與CF相交于點N,∠EAC=∠FAB.有下列結論:①∠B=∠C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正確結論的序號是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90,AB=6,BC=8.以AB, BC,AC的中點A1,B1,C1構成△A1B1C1,以A1B,BB1,A1B1的中點A2,B2,C2構成△A2B2C2,……依次操作,陰影部分面積之和將接近 ( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 1,A(-2,0),B(0,4),以 B 點為直角頂點在第二象限作等腰直角△ABC.
(1)求 C 點的坐標;
(2)在坐標平面內是否存在一點 P,使△PAB 與△ABC 全等?若存在,直接寫出 P 點坐標,若不存在,請說明理由;
(3)如圖 2,點 E 為 y 軸正半軸上一動點, 以 E 為直角頂點作等腰直角△AEM,過 M 作 MN⊥x 軸于 N,求 OE-MN 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線L1:y1=x2+6x+5k和拋物線L2:y2=kx2+6kx+5k,其中k≠0.
(1)下列說法你認為正確的是(填寫序號) ;
①拋物線L1和L2與y軸交于同一點(0,5k);
②拋物線L1和L2開口都向上;
③拋物線L1和L2的對稱軸是同一條直線;
④當k<-1時,拋物線L1和L2都與x軸有兩個交點.
(2)拋物線L1和L2相交于點E、F,當k的值發(fā)生變化時,請判斷線段EF的長度是否發(fā)生變化,并說明理由;
(3)在(2)中,若拋物線L1的頂點為M,拋物線L2的頂點為N,問是否存在實數k,使MN=2EF?如存在,求出實數k;如不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】規(guī)定兩數a、b之間的一種運算,記作(a,b):如果,那么(a,b)=c.
例如:因為,所以(2,8)=3.
(1)根據上述規(guī)定,填空:
(5,125)= ,(-2,4)= ,(-2,-8)= ;
(2)小明在研究這種運算時發(fā)現一個現象:,他給出了如下的證明:
設,則,即
∴,即,
∴.
請你嘗試運用上述這種方法說明下面這個等式成立的理由.
(4,5)+(4,6)=(4,30)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知C為線段AB的中點,E為線段AB上的點,點D為線段AE的中點.
(1)若線段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求線段AB、CE的長;
(2)如圖1,在(1)的條件下,求線段DE的長;
(3)如圖2,若AB=20,AD=2BE,求線段CE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com