如果邊上一點,并且,則是(        )

A.銳角三角形      B.鈍角三角形      C.直角三角形      D.等腰三角形

 

【答案】

D

【解析】

試題分析:根據(jù)全等三角形的對應(yīng)邊相等,即可判斷。

,

∴AB=AC,

是等腰三角形,

故選D.

考點:本題考查的是全等三角形的性質(zhì)

點評:解答本題的關(guān)鍵是掌握全等三角形的對應(yīng)邊相等。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=BC,D是AB邊上一點,E是在AC邊上的一個動點(與點A、C不重合),DF⊥DE,DF與射線BC相交于點F.
(1)如圖2,如果點D是邊AB的中點,求證:DE=DF;
(2)如果AD:DB=m,求DE:DF的值;
(3)如果AC=BC=6,AD:DB=1:2,設(shè)AE=x,BF=y,
①求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
②以CE為直徑的圓與直線AB是否可相切?若可能,求出此時x的值;若不可能,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

從甲、乙兩題中選做一題.如果兩題都做,只以甲題計分.
題甲:若關(guān)于x一元二次方程x2-2(2-k)x+k2+12=0有實數(shù)根a,β.
(1)求實數(shù)k的取值范圍;
(2)設(shè)t=
a+β
k
,求t的最小值.
題乙:如圖所示,在矩形ABCD中,P是BC邊上一點,連接DP并延長,交AB的延長線精英家教網(wǎng)于點Q.
(1)若
BP
PC
=
1
3
,求
AB
AQ
的值;
(2)若點P為BC邊上的任意一點,求證:
BC
BP
-
AB
BQ
=.
我選做的是
 
題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=4,BC=5,D是BC邊上一點,CD=3,點P在邊AC上(點P與A、C不重合),過點P作PE∥BC,交AD于點E.
(1)設(shè)AP=x,DE=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(2)當(dāng)以PE為半徑的⊙E與DB為半徑的⊙D外切時,求∠DPE的正切值;
(3)將△ABD沿直線AD翻折,得到△AB′D,連接B′C.如果∠ACE=∠BCB′,求AP的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•雨花臺區(qū)一模)如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,D是BC邊上一點,CD=3cm,點P為邊AC上一動點(點P與A、C不重合),過點P作PE∥BC,交AD于點E.點P以1cm/s的速度從A到C勻速運動.
(1)設(shè)點P的運動時間為t(s),DE的長為y(cm),求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(2)當(dāng)t為何值時,以PE為半徑的⊙E與以DB為半徑的⊙D外切?并求此時∠DPE的正切值;
(3)將△ABD沿直線AD翻折,得到△AB’D,連接B’C.如果∠ACE=∠BCB’,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在梯形ABCD中,AD∥BC,AB=DC=5,AD=3.5,sinB=
45
,點E是AB邊上一點,BE=3,點P是BC邊上的一動點,連接EP,作∠EPF,使得∠EPF=∠B,射線PF與AD邊交于點F,與CD的延長線交于點G,設(shè)BP=x,DF=y.
(1)求BC的長;
(2)試求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)連接EF,如果△PEF是等腰三角形,試求BP的長.

查看答案和解析>>

同步練習(xí)冊答案