【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

①AC=AD;②BD⊥AC;③四邊形ACED是菱形.

其中正確的個(gè)數(shù)是(

A.0 B.1 C.2 D.3

【答案】D

【解析】

試題分析:∵將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等邊三角形,∴AC=AD,AC=AD=DE=CE,∴四邊形ACED是菱形,∵將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,∴BD⊥AC,∴①②③都正確,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列六種說(shuō)法正確的個(gè)數(shù)是( )
①無(wú)限小數(shù)都是無(wú)理數(shù);
②正數(shù)、負(fù)數(shù)統(tǒng)稱(chēng)實(shí)數(shù);
③無(wú)理數(shù)的相反數(shù)還是無(wú)理數(shù);
④無(wú)理數(shù)與無(wú)理數(shù)的和一定還是無(wú)理數(shù);
⑤無(wú)理數(shù)與有理數(shù)的和一定是無(wú)理數(shù);
⑥無(wú)理數(shù)與有理數(shù)的積一定仍是無(wú)理數(shù).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關(guān)于點(diǎn)C成中心對(duì)稱(chēng),連接AE、BD.
(1)線(xiàn)段AE、BD具有怎樣的位置關(guān)系和大小關(guān)系?說(shuō)明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當(dāng)∠ACB為多少度時(shí),四邊形ABDE為矩形?說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由射線(xiàn)AB,BC,CD,DE,EA組成的平面圖形,則∠1+∠2+∠3+∠4+∠5=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).△AOB的三個(gè)頂點(diǎn)A,O,B都在格點(diǎn)上.

(1)畫(huà)出△AOB關(guān)于點(diǎn)O成中心對(duì)稱(chēng)的三角形;
(2)畫(huà)出△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后得到的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果∠α=55.5°,∠β=55°5',那么∠α與∠β之同的大小關(guān)系是(

A. ∠α>∠β B. ∠α<∠β C. ∠α=∠β D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的方程(a+3)x|a|1﹣3x+2=0是一元二次方程,則a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC由△A′B′C′繞O點(diǎn)旋轉(zhuǎn)180°而得到,則下列結(jié)論不成立的是( )

A.點(diǎn)A與點(diǎn)A′是對(duì)應(yīng)點(diǎn)
B.BO=B′O
C.∠ACB=∠C′A′B′
D.AB∥A′B′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(﹣1,0),C(1,4),點(diǎn)B在x軸上,且AB=4.

(1)求點(diǎn)B的坐標(biāo);
(2)求△ABC的面積;
(3)在y軸上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形的面積為7?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案