【題目】下列六種說(shuō)法正確的個(gè)數(shù)是( )
①無(wú)限小數(shù)都是無(wú)理數(shù);
②正數(shù)、負(fù)數(shù)統(tǒng)稱實(shí)數(shù);
③無(wú)理數(shù)的相反數(shù)還是無(wú)理數(shù);
④無(wú)理數(shù)與無(wú)理數(shù)的和一定還是無(wú)理數(shù);
⑤無(wú)理數(shù)與有理數(shù)的和一定是無(wú)理數(shù);
⑥無(wú)理數(shù)與有理數(shù)的積一定仍是無(wú)理數(shù).
A.1
B.2
C.3
D.4

【答案】B
【解析】解:①無(wú)限不循環(huán)小數(shù)都是無(wú)理數(shù),故①錯(cuò)誤;

②正實(shí)數(shù)、零、負(fù)實(shí)數(shù)統(tǒng)稱實(shí)數(shù),故②錯(cuò)誤;

③無(wú)理數(shù)的相反數(shù)還是無(wú)理數(shù),故③正確;

④無(wú)理數(shù)與無(wú)理數(shù)的和可能是無(wú)理數(shù)、有理數(shù),如﹣π+(π+2)=2,故④錯(cuò)誤;

⑤無(wú)理數(shù)與有理數(shù)的和是無(wú)理數(shù),如﹣π+2=2﹣π,故⑤正確;

⑥無(wú)理數(shù)與有理數(shù)的積可能是有理數(shù)無(wú)理數(shù),如0× =0,故⑥錯(cuò)誤;

故選:B.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解無(wú)理數(shù)(在理解無(wú)理數(shù)時(shí),要抓住“無(wú)限不循環(huán)”這個(gè)要點(diǎn),歸納起來(lái)有四類(lèi):(1)開(kāi)方開(kāi)不盡的數(shù);(2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù);(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;(4)某些三角函數(shù),如sin60o).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),G,H分別是AF,CE的中點(diǎn),連結(jié)EG,F(xiàn)H.
(1)四邊形EHFG是不是平行四邊形?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由;
(2)求四邊形EHFG的面積與平行四邊形ABCD的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是BE上一點(diǎn),D是AC的中點(diǎn),且AB=AC,DE=DB,∠A=60°,△ABC的周長(zhǎng)是18cm.求∠E的度數(shù)及CE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店需要購(gòu)進(jìn)甲、乙兩種商品共180件,其進(jìn)價(jià)和售價(jià)如表:(注:獲利=售價(jià)﹣進(jìn)價(jià))

進(jìn)價(jià)(元/件)

14

35

售價(jià)(元/件)

20

43


(1)若商店計(jì)劃銷(xiāo)售完這批商品后能獲利1240元,問(wèn)甲、乙兩種商品應(yīng)分別購(gòu)進(jìn)多少件?
(2)若商店計(jì)劃投入資金少于5040元,且銷(xiāo)售完這批商品后獲利多于1312元,請(qǐng)問(wèn)有哪幾種購(gòu)貨方案?并直接寫(xiě)出其中獲利最大的購(gòu)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過(guò)點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB, DF.

(1)求證:DF是⊙O的切線;

(2)若DB平分∠ADC,AB=a, ∶DE=4∶1,寫(xiě)出求DE長(zhǎng)的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的證明. 已知:如圖,BE∥CD,∠A=∠1,

求證:∠C=∠E.
證明:∵BE∥CD (已知 )
∴∠2=∠C (
又∵∠A=∠1 (已知 )
∴AC∥DE (
∴∠2=∠E (
∴∠C=∠E (等量代換 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,4),(﹣1,2).

(1)①請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
②將△ABC向右平移2個(gè)單位長(zhǎng)度,然后再向下平移3個(gè)單位長(zhǎng)度,得到△A′B′C′,畫(huà)出平移后的△A′B′C′.
(2)寫(xiě)出點(diǎn)△A′B′C′各個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

①AC=AD;②BD⊥AC;③四邊形ACED是菱形.

其中正確的個(gè)數(shù)是(

A.0 B.1 C.2 D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案