【題目】李林想了解班上同學是否具有閱讀習慣及分享意識,于是設計了一份調(diào)查問卷:

李林對班上位同學進行了調(diào)查,收集調(diào)查結(jié)果如下:

問題1的調(diào)查結(jié)果

選項

人數(shù)

問題2的調(diào)查結(jié)果

請在下圖中將問題1的調(diào)查結(jié)果用條形統(tǒng)計圖表示出來:

請用下面的統(tǒng)計表整理問題2的調(diào)查結(jié)果:

選項

劃記

人數(shù)

百分比

合計

根據(jù)調(diào)查結(jié)果,你認為班上同學在閱讀習慣及分享意識方面做得怎么樣?

【答案】1)見詳解;(2)見詳解;(3)閱讀習慣相對不錯,分享意識有待加強.(答案不唯一)

【解析】

1)根據(jù)問題1的調(diào)查結(jié)果即可作出條形統(tǒng)計圖;

2)根據(jù)問題2的調(diào)查結(jié)果即可得到統(tǒng)計表中的相關(guān)結(jié)果;

3)根據(jù)問題1與問題2的調(diào)查結(jié)果即可得到答案.

1)如圖

2)如表

3)閱讀習慣相對不錯,分享意識有待加強.(答案不唯一)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一段拋物線y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C6,若點P(11,m)在第6段拋物線C6,m=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某玩具廠加工了一批玩具六一捐贈給兒童福利院,甲、乙兩車間同時開始加工這批玩具,加工一段時間后,甲車間的設備出現(xiàn)故障停產(chǎn)一段時間,乙車間繼續(xù)加工,甲維修好設備后繼續(xù)按照原來的工作效率加工,從工作開始到加工完這批玩具乙車間工作 小時,甲、乙兩車間加工玩具的總數(shù)量 (件)與加工時間 (時)之間的函數(shù)圖象如圖所示.

1)求乙車間每小時加工玩具的數(shù)量.

2)求甲車間維修完設備后, 之間的函數(shù)關(guān)系式.

3)何時能加工一半?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請你認真閱讀下面的小探究系列,完成所提出的問題.

(1)如圖1,將角尺放在正方形ABCD上,使角尺的直角頂點E與正方形ABCD的頂點D重合,角尺的一邊交CB于點F,將另一邊交BA的延長線于點G.求證:EF=EG.

(2)如圖2,移動角尺,使角尺的頂點E始終在正方形ABCD的對角線BD上,其余條件不變,請你思考后直接回答EFEG的數(shù)量關(guān)系:EF   EG(用“=”“≠”填空)

(3)運用(1)(2)解答中所積累的活動經(jīng)驗和數(shù)學知識,完成下題:如圖3,將(2)中的正方形ABCD”改成矩形ABCD”,使角尺的一邊經(jīng)過點A(即點G、A重合),其余條件不變,若AB=4,BC=3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABCD的兩邊AB,AD的長是關(guān)于x的方程x2mx0的兩個實數(shù)根.

(1)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】市煤氣公司準備給某新建小區(qū)的用戶安裝管道煤氣,現(xiàn)有用戶提出了安裝申請,此外每天還有新的用戶提出申請,假設煤氣公司每個安裝小組安裝的數(shù)量相同,且每天申請安裝的用戶數(shù)也相同,若煤氣公司安排個安裝小組同時做,則天就可以裝完所有新、舊用戶的申請;若煤氣公司安排個安裝小組同時做,則天可以裝完所有新舊用戶的申請.

求每天新申請安裝的用戶數(shù)及每個安裝小組每天安裝的數(shù)量;

如果要求在天內(nèi)安裝完所有新、舊用戶的申請,但前天煤氣公司只能派出個安裝小組安裝,那么最后幾天至少需要增加多少個安裝小組同時安裝,才能完成任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于x、y的二元一次方程組的解都為正數(shù).

1)求a的取值范圍;

2)化簡|a+1|﹣|a﹣1|;

3)若上述二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點EF分別在BCCD上,AE=AF

1)求證:BE=DF

2)連接ACEF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案