【題目】若關(guān)于x、y的二元一次方程組的解都為正數(shù).

1)求a的取值范圍;

2)化簡|a+1|﹣|a﹣1|

3)若上述二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求a的值.

【答案】(1)a1;(2)2;(3)a的值是2

【解析】(1)解方程組,并用含a的式子分別表示出x與y,再根據(jù) 列出不等式并求解即可;(2)根據(jù)絕對值的性質(zhì)進行化簡;(3)將二元一次方程組的解分別當(dāng)作腰和底,根據(jù)等腰三角形的周長為9列出方程,再根據(jù)三角形三邊關(guān)系進行判斷即可.

解:(1)解方程組得;

,

關(guān)于x、y的二元一次方程組的解都為正數(shù),

即: ,

解得:a1;

2a1

|a+1|﹣|a﹣1|=a+1﹣a+1=2;

3二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,這個等腰三角形的周長為9,

2a﹣1+a+2=9,解得:a=3,

x=2,y=5,不能組成三角形,

2a+2+a﹣1=9,解得:a=2

x=1,y=5,能組成等腰三角形,

a的值是2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小馬虎解方理=3出現(xiàn)了錯誤,解答過程如下:

方程兩邊都乘以x,得x﹣1+2=3(第一步)

移項,合并同類項,得x=2(第二步)

經(jīng)檢驗,x=2是原方程的解(第三步)

(1)小馬虎解答過程是從第   步開始出錯的,出錯原因是   ;

(2)請寫出此題正確的解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投資新建了一商場,共有商鋪30間,據(jù)推測,當(dāng)每間的年租金定為10萬元時,可全部租出,若每間的年租金每增加5000元,少租出商鋪1間,該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5000元.

(1)當(dāng)每間商鋪的年租金定為12萬元時,能租出多少間?

(2)當(dāng)每間商鋪的年租金定為多少萬元時,該公司的年收益為285萬元?(收益=租金﹣各種費用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李林想了解班上同學(xué)是否具有閱讀習(xí)慣及分享意識,于是設(shè)計了一份調(diào)查問卷:

李林對班上位同學(xué)進行了調(diào)查,收集調(diào)查結(jié)果如下:

問題1的調(diào)查結(jié)果

選項

人數(shù)

問題2的調(diào)查結(jié)果

請在下圖中將問題1的調(diào)查結(jié)果用條形統(tǒng)計圖表示出來:

請用下面的統(tǒng)計表整理問題2的調(diào)查結(jié)果:

選項

劃記

人數(shù)

百分比

合計

根據(jù)調(diào)查結(jié)果,你認(rèn)為班上同學(xué)在閱讀習(xí)慣及分享意識方面做得怎么樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算或解方程:

(1)

(2)

(3) 解方程:

(4) 解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】試解答下列問題:

(1)在圖1我們稱之為“8字形”,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:

(2)仔細(xì)觀察,在圖2中“8字形”的個數(shù)是;

(3) 在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點P,并且與CD、AB分別相交于MN.試求∠P的度數(shù);

(4)如果圖2中∠D和∠B為任意角時,其他條件不變,試寫出∠B與∠P、∠D之間數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AB為半圓O的直徑,D為BA的延長線上一點,DC為半圓O的切線,切點為C.

(1)求證:∠ACD=∠B;

(2)如圖(2),∠BDC的平分線分別交AC,BC于點E,F(xiàn),求∠CEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,BC=2ABMAD的中點,CEAB,垂足為E,求證:∠DME=3AEM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,C的半徑為r,P是與圓心C不重合的點,點P關(guān)于C的反稱點的定義如下:若在射線CP上存在一點P′,滿足CP+CP′=2r,則稱P′為點P關(guān)于C的反稱點,如圖為點P及其關(guān)于C的反稱點P′的示意圖.

特別地,當(dāng)點P′與圓心C重合時,規(guī)定CP′=0.

(1)當(dāng)O的半徑為1時.

分別判斷點M(2,1),N(,0),T1, )關(guān)于O的反稱點是否存在?若存在,求其坐標(biāo);

點P在直線y=﹣x+2上,若點P關(guān)于O的反稱點P′存在,且點P′不在x軸上,求點P的橫坐標(biāo)的取值范圍;

2C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點A,B,若線段AB上存在點P,使得點P關(guān)于C的反稱點P′在C的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案