【題目】如圖,直線y=與x軸y軸分別交于A、C兩點,以AC為對角線作第一個矩形ABCO,對角線交點為A1,再以CA1為對角線作第二個矩形A1B1CO1,對角線交點為A2,同法作第三個矩形A2B2CO2對角線交點為A3,…以此類推,則第2019個矩形對角線交點A2019的坐標為_____.
【答案】
【解析】
根據(jù)矩形的性質(zhì),以及相似三角形的判定方法,可以證得:△AnCOn∽△ACO,相似比是,即可求得AnOn,OOn的長,進而得到An的坐標,據(jù)此可得點A2019的坐標.
解:在中,
令x=0,解得:y=2;
令y=0,解得:x=2,
則OC=2,OA=2.
∵A1是矩形ABCO的對角線的交點,O1A1∥OA,
∴△A1CO1∽△ACO,相似比是;
同理,△A2CO2∽△A1CO1,相似比是;
則△A2CO2∽△ACO,相似比是=()2,
同理:△AnCOn∽△ACO,相似比是()n.
∴,
∴AnOn=()nOA=()n×2=()n﹣1=,
COn=()n×OC=()n×2=()n﹣1=,
OOn=2﹣,
則點An的坐標為(,),
∴點A2019的坐標為(,).
故答案為(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014湖南懷化)兩個城鎮(zhèn)A、B與兩條公路ME、MF位置如圖所示,其中ME是東西方向的公路.現(xiàn)電信部門需在C處修建一座信號發(fā)射塔,要求發(fā)射塔到兩個城鎮(zhèn)A、B的距離相等,到兩條公路ME、MF的距離也必須相等,且在∠FME的內(nèi)部.
(1)那么點C應(yīng)選在何處?請在圖中,用尺規(guī)作圖找出符合條件的點C(不寫已知、求作、作法,只保留作圖痕跡);
(2)設(shè)AB的垂直平分線交ME于點N,且km,在M處測得點C位于點M的北偏東60°方向,在N處測得點C位于點N的北偏西45°方向,求點C到公路ME的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進價為每件50元.當(dāng)售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(x﹣a)(x+5)=x2﹣bx﹣5,一元二次方程ax2+bx+k=0的兩個實數(shù)根x1,x2滿足(x1﹣x2)2﹣2x1x2=4,則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程(m+1)x2+2(m+1)x+2=0有兩個相等的實數(shù)根,拋物線y=﹣x2+(m+1)x+3與x軸交于A、B兩點(A在B左側(cè)),與y軸相交于點C,拋物線的頂點為D.
(1)求拋物線的解析式.
(2)如圖1,設(shè)拋物線的對軸交x軸于點E,在拋物線的對稱軸上是否存在點P,使P點到x軸的距離等于P點到直線BD的距離?若存在,求出點P的坐標,若不存在,請說明理由.
(3)如圖2,作CF⊥DE于F,M為射線EA上一動點.如果在線段EF上恰好存在兩個點N滿足△CFN與△NEM相似,求M點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)需了解2019年各月份中5至14日廣州市每天最低氣溫的情況:圖①是3月份的折線統(tǒng)計圖.(數(shù)據(jù)來源于114天氣網(wǎng))
(1)圖②是3月份的頻數(shù)分布直方圖,根據(jù)圖①提供的信息,補全圖②中的頻數(shù)分布直方圖;
(2)3月13日與10日這兩天的最低氣溫之差是 ℃;
(3)圖③是5月份的折線統(tǒng)計圖.用表示5月份的方差;用表示3月份的方差,比較大。 ;比較3月份與5月份, 月份的更穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x與雙曲線y=(k>0,x>0)交于點A,將直線y=x向上平移2個單位長度后,與y軸交于點C,與雙曲線交于點B,若OA=3BC,則k的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動點(B點除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某部門為了解工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了20名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:整理上面數(shù)據(jù),得到條形統(tǒng)計圖;樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如表所示:
統(tǒng)計量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 19.2 | m | n |
根據(jù)以上信息,解答下列問題:
(1)上表中m、n的值分別為 , ;
(2)為調(diào)動積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓60%左右的工人能獲獎,應(yīng)根據(jù) 來確定獎勵標準比較合適(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”);
(3)該部門規(guī)定:每天加工零件的個數(shù)達到或超過21個的工人為生產(chǎn)能手若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù);
(4)現(xiàn)決定從小王、小張、小李、小劉中選兩人參加業(yè)務(wù)能手比賽,直接寫出恰好選中小張、小李兩人的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com