【題目】如圖,直線yxy軸分別交于A、C兩點,以AC為對角線作第一個矩形ABCO,對角線交點為A1,再以CA1為對角線作第二個矩形A1B1CO1,對角線交點為A2,同法作第三個矩形A2B2CO2對角線交點為A3,以此類推,則第2019個矩形對角線交點A2019的坐標為_____

【答案】

【解析】

根據(jù)矩形的性質(zhì),以及相似三角形的判定方法,可以證得:AnCOn∽△ACO,相似比是,即可求得AnOn,OOn的長,進而得到An的坐標,據(jù)此可得點A2019的坐標.

解:在中,

x0,解得:y2

y0,解得:x2,

OC2,OA2

A1是矩形ABCO的對角線的交點,O1A1OA

A1CO1∽△ACO,相似比是

同理,A2CO2∽△A1CO1,相似比是;

A2CO2∽△ACO,相似比是=(2,

同理:AnCOn∽△ACO,相似比是(n

,

AnOn=(nOA=(n×2=(n1,

COn=(n×OC=(n×2=(n1,

OOn2,

則點An的坐標為(,),

∴點A2019的坐標為(,).

故答案為().

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014湖南懷化)兩個城鎮(zhèn)A、B與兩條公路ME、MF位置如圖所示,其中ME是東西方向的公路.現(xiàn)電信部門需在C處修建一座信號發(fā)射塔,要求發(fā)射塔到兩個城鎮(zhèn)A、B的距離相等,到兩條公路ME、MF的距離也必須相等,且在∠FME的內(nèi)部.

1)那么點C應(yīng)選在何處?請在圖中,用尺規(guī)作圖找出符合條件的點C(不寫已知、求作、作法,只保留作圖痕跡);

2)設(shè)AB的垂直平分線交ME于點N,且km,在M處測得點C位于點M的北偏東60°方向,在N處測得點C位于點N的北偏西45°方向,求點C到公路ME的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進價為每件50元.當(dāng)售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:

(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出yx的函數(shù)關(guān)系式,并求出自變量x的取值范圍;

(2)當(dāng)降價多少元時,每星期的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(xa)(x+5)=x2bx5,一元二次方程ax2+bx+k0的兩個實數(shù)根x1,x2滿足x1x222x1x24,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(m+1x2+2m+1x+20有兩個相等的實數(shù)根,拋物線y=﹣x2+m+1x+3x軸交于A、B兩點(AB左側(cè)),與y軸相交于點C,拋物線的頂點為D

1)求拋物線的解析式.

2)如圖1,設(shè)拋物線的對軸交x軸于點E,在拋物線的對稱軸上是否存在點P,使P點到x軸的距離等于P點到直線BD的距離?若存在,求出點P的坐標,若不存在,請說明理由.

3)如圖2,作CFDEF,M為射線EA上一動點.如果在線段EF上恰好存在兩個點N滿足CFNNEM相似,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)需了解2019年各月份中514日廣州市每天最低氣溫的情況:圖①是3月份的折線統(tǒng)計圖.(數(shù)據(jù)來源于114天氣網(wǎng))

1)圖②是3月份的頻數(shù)分布直方圖,根據(jù)圖①提供的信息,補全圖②中的頻數(shù)分布直方圖;

2313日與10日這兩天的最低氣溫之差是   ℃;

3)圖③是5月份的折線統(tǒng)計圖.用表示5月份的方差;用表示3月份的方差,比較大。   ;比較3月份與5月份,   月份的更穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx與雙曲線yk0,x0)交于點A,將直線yx向上平移2個單位長度后,與y軸交于點C,與雙曲線交于點B,若OA3BC,則k的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=4,D為邊AB上一動點(B點除外),以CD為一邊作正方形CDEF,連接BE,則△BDE面積的最大值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某部門為了解工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了20名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:整理上面數(shù)據(jù),得到條形統(tǒng)計圖;樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如表所示:

統(tǒng)計量

平均數(shù)

眾數(shù)

中位數(shù)

數(shù)值

19.2

m

n

根據(jù)以上信息,解答下列問題:

1)上表中m、n的值分別為      ;

2)為調(diào)動積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓60%左右的工人能獲獎,應(yīng)根據(jù)   來確定獎勵標準比較合適(填平均數(shù)、眾數(shù)中位數(shù));

3)該部門規(guī)定:每天加工零件的個數(shù)達到或超過21個的工人為生產(chǎn)能手若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù);

4)現(xiàn)決定從小王、小張、小李、小劉中選兩人參加業(yè)務(wù)能手比賽,直接寫出恰好選中小張、小李兩人的概率.

查看答案和解析>>

同步練習(xí)冊答案