【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)解析式;

(2)連接PO,PC,并將POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

【答案】解:(1)將B、C兩點(diǎn)的坐標(biāo)代入,得

, 解得。

二次函數(shù)的解析式為

(2)存在。如圖1,假設(shè)拋物線上存在點(diǎn)P,使四邊形為菱形,連接交CO于點(diǎn)E。

四邊形為菱形, KPC=PO,且PECO。

OE=EC=,即P點(diǎn)的縱坐標(biāo)為。

(不合題意,舍去)

存在這樣的點(diǎn),此時(shí)P點(diǎn)的坐標(biāo)為(。

(3)如圖2,連接PO,作PMx于M,PNy于N。設(shè)P點(diǎn)坐標(biāo)為(x,),

=0,得點(diǎn)A坐標(biāo)為(-1,0)。

AO=1,OC=3, OB=3,PM=,PN=x。

S四邊形ABPC=++

=AO·OC+OB·PM+OC·PN

=×1×3+×3×()+×3×x

==。

當(dāng)x=時(shí),四邊形ABPC的面積最大.此時(shí)P點(diǎn)坐標(biāo)為(,),四邊形ABPC的最大面積為。

【解析】

試題(1)直接把B(3,0)、C(0,-3)代入可得到關(guān)于b、c的方程組,解方程組求得b,c,則從而求得二次函數(shù)的解析式。

(2)假設(shè)拋物線上存在點(diǎn)P,使四邊形為菱形,連接交CO于點(diǎn)E,則PO=PC,根據(jù)翻折的性質(zhì)得OP′=OP,CP′=CP,易得四邊形POP′C為菱形,又E點(diǎn)坐標(biāo)為(0, ),則點(diǎn)P的縱坐標(biāo)為,把y=

代入可求出對(duì)應(yīng)x的值,然后確定滿足條件的P點(diǎn)坐標(biāo)。

(3)由S四邊形ABPC=++求出S四邊形ABPC關(guān)于P點(diǎn)橫坐標(biāo)的函數(shù)表達(dá)式,應(yīng)用二次函數(shù)的最值原理求解。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ACB=90°,AC=BCBECEE,ADCED,BE=3cm,AD=9cm

求:(1DE的長(zhǎng);

2)若CEABC的外部(如圖),其它條件不變,DE的長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張四邊形紙片沿EF折疊,以下條件中能得出ADBC的條件個(gè)數(shù)是( )

①∠2=4:②∠2+3=180°;③∠1=6:④∠4=5

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寧波至紹興城際列車已于2019710日運(yùn)營(yíng),這是國(guó)內(nèi)首條利用既有鐵路改造開行的跨市域城際鐵路.其中余姚至紹興的成人票價(jià)12/人,學(xué)生票價(jià)6/.余姚某校801班師生共計(jì)50人坐城際列車去紹興秋游.

1)設(shè)有名老師,求801班師生從余姚到紹興的城際列車總費(fèi)用關(guān)于的函數(shù)表達(dá)式.

2)若從余姚到紹興的城際列車總費(fèi)用不超過(guò)330元,問(wèn)至少有幾名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠MON及其邊上一點(diǎn)A,以點(diǎn)A為圓心,AO長(zhǎng)為半徑畫弧,分別交OM,ON于點(diǎn)BC,再以點(diǎn)C為圓心,AC長(zhǎng)為半徑畫弧,恰好經(jīng)過(guò)點(diǎn)B,錯(cuò)誤的結(jié)論是( .

A.B.OCB90°C.MON30°D.OC2BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x2+(a+3)x+a+1=0是關(guān)于x的一元二次方程.

(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)若方程的兩個(gè)實(shí)數(shù)根為x1 ,x2 ,x12+x22=10,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)的許多創(chuàng)新與發(fā)展都曾居世界前列,其中“楊輝三角”(如圖)就是一例,它的發(fā)現(xiàn)比歐洲早五百年左右.

楊輝三角兩腰上的數(shù)都是1,其余每個(gè)數(shù)為它的上方(左右)兩數(shù)之和.事實(shí)上,這個(gè)三角形給出了n=1,2,34,5,6)的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律. 例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)著展開式中各項(xiàng)的系數(shù);第四行的四個(gè)數(shù)13,3,1,恰好對(duì)應(yīng)著展開式中各項(xiàng)的系數(shù),等等.

1)當(dāng)n=4時(shí),的展開式中第3項(xiàng)的系數(shù)是_________;

2)人們發(fā)現(xiàn),當(dāng)n是大于6的自然數(shù)時(shí),這個(gè)規(guī)律依然成立,那么的展開式中各項(xiàng)的系數(shù)的和為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)是(2,﹣1),且經(jīng)過(guò)點(diǎn)A(5,8)

(1)求該拋物線的解析式;

(2)設(shè)該拋物線與y軸相交于點(diǎn)B,與x軸相交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),試求點(diǎn)B、C、D的坐標(biāo);

(3)設(shè)點(diǎn)Px軸任一點(diǎn),連接AP、BP.試求當(dāng)AP+BP取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作O的切線交邊BC于N.

(1)求證:△ODM∽△MCN;

(2)設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);

(3)在點(diǎn)O的運(yùn)動(dòng)過(guò)程中,設(shè)CMN的周長(zhǎng)為P,試用含x的代數(shù)式表示P,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

同步練習(xí)冊(cè)答案