【題目】如圖,在邊長為8的正方形ABCD中,點O為AD上一動點(4<OA<8),以O(shè)為圓心,OA的長為半徑的圓交邊CD于點M,連接OM,過點M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,求OA的長(用含x的代數(shù)式表示);
(3)在點O的運動過程中,設(shè)△CMN的周長為P,試用含x的代數(shù)式表示P,你能發(fā)現(xiàn)怎樣的結(jié)論?
【答案】(1)證明見解析(2)(0<x<8)(3)在點O的運動過程中,△CMN的周長P始終為16,是一個定值
【解析】試題分析:(1)依題意可得∠OMC=∠MNC,然后可證得△ODM∽△MCN.
(2)設(shè)DM=x,OA=OM=R,OD=AD-OA=8-R,根據(jù)勾股定理求出OA的值.
(3)由1可求證△ODM∽△MCN,利用線段比求出CN,MN的值.然后可求出△CMN的周長等于CM+CN+MN,把各個線段消去代入可求出周長.
試題解析:
(1)證明:∵MN切⊙O于點M,
∴∠OMN=90°;
∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°;
∴∠OMD=∠MNC;
又∵∠D=∠C=90°;
∴△ODM∽△MCN,
(2)在Rt△ODM中,DM=x,設(shè)OA=OM=R;
∴OD=AD﹣OA=8﹣R,
由勾股定理得:(8﹣R)2+x2=R2,
∴64﹣16R+R2+x2=R2,
∴OA=R= ;
(3)∵CM=CD﹣DM=8﹣x,
又∵OD=8-R=8-,
且有△ODM∽△MCN,
∴,
∴代入得到CN=;
同理,
∴代入得到MN= ;
∴△CMN的周長為P=CM+CN+MN=(8-x)+ =16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點,B點的坐標為(3,0),與y軸交于點C(0,-3),點P是直線BC下方拋物線上的一個動點.
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形.是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標;若不存在,請說明理由;
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師將1個黑球和若干個白球入放一個不透明的口袋并攪勻,讓若干學(xué)生進行摸球試驗,每次摸出一個球(有放回),統(tǒng)計數(shù)據(jù)如下表:
摸球的次數(shù)(n) | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數(shù)(m) | 23 | 31 | 60 | 130 | 203 | 251 |
摸到黑球的頻率(m/n) | 0.230 | 0.207 | 0.300 | 0.260 | 0.254 |
(1)補全上表中的有關(guān)數(shù)據(jù),并根據(jù)上表數(shù)據(jù)估計從袋中摸出一個球是黑球的概率是 ;
(2)估計口袋中白球的個數(shù);
(3)在(2)的條件下,若小強同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖法或列表法計算他兩次都摸出白球的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖線段AB的端點在邊長為1的正方形網(wǎng)格的格點上,現(xiàn)將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°得到線段AC.
(1)請你用尺規(guī)在所給的網(wǎng)格中畫出線段AC及點B經(jīng)過的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標系中,已知點A的坐標為(1,3),點B的坐標為(-2,-1),則點C的坐標為 ;
(3)線段AB在旋轉(zhuǎn)到線段AC的過程中,線段AB掃過的區(qū)域的面積為 ;
(4)若有一張與(3)中所說的區(qū)域形狀相同的紙片,將它圍成一個幾何體的側(cè)面,則該幾何體底面圓的半徑長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC是等腰三角形,AB=AC,點D,E,F分別在AB,BC,AC邊上,且BD=CE,BE=CF.
(1)求證:△DEF是等腰三角形;
(2)猜想:當∠A滿足什么條件時,△DEF是等邊三角形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“行動起來,對抗霧霾”為主題的植樹活動,某街道積極響應(yīng),決定對該街道進行綠化改造,共購進甲、乙兩種樹共500棵,已知甲樹每棵800元,乙樹每棵1200元.
(1)若購買兩種樹總金額為560000元,求甲、乙兩種樹各購買了多少棵?
(2)若購買甲樹的金額不少于購買乙樹的金額,至少應(yīng)購買甲樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車去學(xué)校、乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學(xué)同時從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.
(1)求乙騎自行車的速度;
(2)當甲到達學(xué)校時,乙同學(xué)離學(xué)校還有多遠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAB=30°,AB=10,點D在線段AB上,AD=2.點P,Q以相同的速度從D點同時出發(fā),點P沿DB方向運動,點Q沿DA方向到點A后立刻以原速返回向點B運動.以PQ為直徑構(gòu)造⊙O,過點P作⊙O的切線交折線AC﹣CB于點E,將線段EP繞點E順時針旋轉(zhuǎn)60°得到EF,過F作FG⊥EP于G,當P運動到點B時,Q也停止運動,設(shè)DP=m.
(1)當2<m≤8時,AP=,AQ=.(用m的代數(shù)式表示)
(2)當線段FG長度達到最大時,求m的值;
(3)在點P,Q整個運動過程中,
①當m為何值時,⊙O與△ABC的一邊相切?
②直接寫出點F所經(jīng)過的路徑長是.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關(guān)系,且在溫度達到30℃時,電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求當10≤t≤30時,R和t之間的關(guān)系式;
(2)求溫度在30℃時電阻R的值;并求出t≥30時,R和t之間的關(guān)系式;
(3)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時,發(fā)熱材料的電阻不超過6 kΩ?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com