【題目】已知AB∥CD,點E為平面內(nèi)一點,BE⊥CE于E,
(1)如圖1,請直接寫出∠ABE和∠DCE之間的數(shù)量關(guān)系;
(2)如圖2,過點E作EF⊥CD,垂足為F,求證:∠CEF=∠ABE;
(3)如圖3,在(2)的條件下,作EG平分∠CEF交DF于點G,作ED平分∠BEF交CD于D,連接BD,若∠DBE+∠ABD=180°,且∠BDE=3∠GEF,求∠BEG的度數(shù)。
【答案】(1)∠DCE=90°+∠ABE;(2)見解析;(3)∠BEG=105°.
【解析】
(1)結(jié)論:∠DCE=90°+∠ABE.如圖1中,從BE交DC的延長線于H.利用三角形的外角的性質(zhì)即可證明;
(2)只要證明∠CEF與∠CEM互余,∠BEM與∠CEM互余,可得∠CEF=∠BEM即可解決問題;
(3)如圖3中,設(shè)∠GEF=α,∠EDF=β.想辦法構(gòu)建方程求出α即可解決問題;
解:(1)結(jié)論:∠DCE=90°+∠ABE.
理由:如圖1中,從BE交DC的延長線于H.
∵AB∥CH,
∴∠ABE=∠H,
∵BE⊥CE,
∴∠CEH=90°,
∴∠DCE=∠H+∠CEH=90°+∠H,
∴∠DCE=90°+∠ABE.
(2)如圖2中,作EM∥CD,
∵EM∥CD,CD∥AB,
∴AB∥CD∥EM,
∴∠BEM=∠ABE,∠F+∠FEM=180°,
∵EF⊥CD,
∴∠F=90°,
∴∠FEM=90°,
∴∠CEF與∠CEM互余,
∵BE⊥CE,
∴∠BEC=90°,
∴∠BEM與∠CEM互余,
∴∠CEF=∠BEM,
∴∠CEF=∠ABE.
(3)如圖3中,設(shè)∠GEF=α,∠EDF=β.
∴∠BDE=3∠GEF=3α,
∵EG平分∠CEF,
∴∠CEF=2∠FEG=2α,
∴∠ABE=∠CEF=2α,
∵AB∥CD∥EM,
∴∠MED=∠EDF=β,∠KBD=∠BDF=3α+β,∠ABD+∠BDF=180°,
∴∠BED=∠BEM+∠MED=2α+β,
∵ED平分∠BEF,
∴∠BED=∠FED=2α+β,
∴∠DEC=β,
∵∠BEC=90°,
∴2α+2β=90°,
∵∠DBE+∠ABD=180°,∠ABD+∠BDF=180°,
∴∠DBE=∠BDF=∠BDE+∠EDF=3α+β,
∵∠ABK=180°,
∴∠ABE+∠B=DBE+∠KBD=180°,
即2α+(3α+β)+(3α+β)=180°,
∴6α+(2α+2β)=180°,
∴α=15°,
∴∠BEG=∠BEC+∠CEG=90°+15°=105°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有2個,若從中隨機摸出一個球,這個球是白球的概率為.
(1)求袋子中白球的個數(shù);(請通過列式或列方程解答)
(2)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點是對角線上一點,連接,將繞點逆時針方向旋轉(zhuǎn)到,連接,交于點,若,,則線段的長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD交于點O,OE⊥AB,且OC平分∠AOE.
(1)如圖1,求∠BOD的度數(shù);
(2)如圖2,過O點作射線OF,且∠DOF=4∠AOF,求∠FOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題6分)甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCO中,A(1,2),B(5,2),將ABCO繞O點逆時針方向旋轉(zhuǎn)90°到A′B′C′O的位置,則點B′的坐標(biāo)是( )
A.(﹣2,4)B.(﹣2,5)C.(﹣1,5)D.(﹣1,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖某幢大樓頂部有廣告牌CD.張老師目高MA為1.60米,他站立在離大樓45米的A處測得大樓頂端點D的仰角為30°;接著他向大樓前進14米、站在點B處,測得廣告牌頂端點C的仰角為45°.(取 ,計算結(jié)果保留一位小數(shù))
(1)求這幢大樓的高DH;
(2)求這塊廣告牌CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①b2﹣4ac<0;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③2a+b=0;④當(dāng)y>0時,x的取值范圍是﹣1<x<3;⑤當(dāng)x>0時,y隨x增大而減小.其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O交CA于點E,點G是AD的中點.
(1)求證:GE是⊙O的切線;
(2)若AC⊥BC,且AC=8,BC=6,求切線GE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com