用換元法解方程(x2+x)2+2(x2+x)-1=0,若設(shè)y=x2+x,則原方程可變形為


  1. A.
    y2+2y+1=0
  2. B.
    y2-2y+1=0
  3. C.
    y2+2y-1=0
  4. D.
    y2-2y-1=0
C
分析:x2+x看作一個整體,利用y代替x2+x即可求解.
解答:設(shè)y=x2+x,得y2+2y-1=0.故選C.
點評:此題考查了換元思想,解題的關(guān)鍵是把x2+x看作一個整體,要有整體思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

用換元法解方程:x2+2x-
6x2+2x
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、用換元法解方程(x2+x)2+2(x2+x)-1=0,若設(shè)y=x2+x,則原方程可變形為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•廣州)用換元法解方程
5(x2-x)
x2+1
+
2(x2+1)
x2-x
=6時,最適宜的做法是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)解方程:x2+2x=2;
(2)用換元法解方程:x2-x+1=
6x2-x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用換元法解方程
8(x2+2x)
x2-1
+
3(x2-1)
x2+2x
=11
時若設(shè)
x2-1
x2+2x
=y
,則可得到整式方程是( 。
A、3y2-11y+8=0
B、3y2+8y=11
C、8y2-11y+3=0
D、8y2+3y=11

查看答案和解析>>

同步練習(xí)冊答案