精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,CFAB于點FBEAC于點E,MBC的中點連接ME、MF、EF

1 求證:△MEF是等腰三角形;

2 若∠A=,∠ABC=50°,求∠EMF的度數.

【答案】1)見解析;(2)∠EMF=40°

【解析】

1)易得△BCE和△BCF都是直角三角形,根據直角三角形斜邊上的中線等于斜邊的一半可得ME=MF=BC,即可得證;

2)首先根據三角形內角和定理求出∠ACB=60°,然后由(1)可知MF=MB,ME=MC,利用等邊對等角可求出∠MFB=50°,∠MEC=60°,從而推出∠BMF和∠CME的度數,即可求∠EMF的度數.

1)∵CFAB于點F,BEAC于點E,

∴△BCE和△BCF為直角三角形

MBC的中點

ME=BC,MF=BC

ME=MF

即△MEF是等腰三角形

2)∵∠A=70°,∠ABC=50°

∴∠ACB=180°-70°-50°=60°

由(1)可知MF=MB,ME=MC,

∴∠MFB=ABC=50°,∠MEC=ACB=60°,

∴∠BMF=180°-2×50°=80°,∠CME=180°-2×60°=60°

∴∠EMF=180°-BMF-CME=180°-80°-60°=40°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】本題共10分水果批發(fā)市場有一種高檔水果,如果每千克盈利毛利潤10元,每天可售出500千克經市場調查發(fā)現,在進貨價不變的情況下,若每千克漲價1元,日銷量將減少20千克

1若以每千克能盈利18元的單價出售,問每天的總毛利潤為多少元?

2現市場要保證每天總毛利潤6000元,同時又要使顧客得到實惠,則每千克應漲價多少元?

3現需按毛利潤的10%交納各種稅費,人工費每日按銷售量每千克支出09元,水電房租費每日102元,若剩下的每天總純利潤要達到5100元,則每千克漲價應為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是( )

A.四邊形AEDF是平行四邊形

B.若∠BAC=90°,則四邊形AEDF是矩形

C.若AD平分∠BAC,則四邊形AEDF是矩形

D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】請將下列事件發(fā)生的概率標在圖1中(用字母表示):

1)記為點A:隨意擲兩枚質地均勻的骰子,朝上面的點數之和為1;

2)記為點B:拋出的籃球會下落;

3)記為點C:從裝有3個紅球、7個白球的口袋中任取一個球,恰好是白球(這些球除顏色外完全相同);

4)記為點D:如圖2所示的正方形紙片上做隨機扎針實驗,則針頭恰好扎在陰影區(qū)域內.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】8分如圖,AC是ABCD的一條對角線,過AC中點O的直線分別交AD,BC于點E,F

1求證:AOE≌△COF;

2當EF與AC滿足什么條件時,四邊形AFCE是菱形?并說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點PQ分別是邊BC和半圓上的動點,連接PQ,則PQ長的最小值是_______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以OA、OC為邊在第一象限內作長方形OABC

(1)求點A、C的坐標;

(2)將ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖);

(3)在坐標平面內,是否存在點P(除點B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,過點BBEAD于點E,過點EEFAB于點F,與CD的延長線交于點G,連接BG,且BEBC,BG5,∠BGF45°,EG3,若點M是線段BF上的一個動點,將MEF沿ME所在直線翻折得到MEF,連接CF,則CF長度的最小值是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場計劃購進、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進價、售價如表所示:

)若商場預計進貨款為元,則這兩種臺燈各購進多少盞?

)若商場規(guī)定型臺燈的進貨數量不超過型臺燈數量的倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?

查看答案和解析>>

同步練習冊答案