【題目】如圖,已知點A(2,3)和直線y=x,

(1)點A關于直線y=x的對稱點為點B,點A關于原點(0,0)的對稱點為點C;寫出點B、C的坐標;

(2)若點D是點B關于原點(0,0)的對稱點,判斷四形ABCD的形狀,并說明理由.

【答案】(1)B(3,2),點C(﹣2,﹣3);(2)四邊形ABCD是矩形.理由見解析.

【解析】

1)依據(jù)關于直線y=x的對稱點的坐標特征以及關于原點的對稱點的坐標特征,即可得到B3,2),C(﹣2,﹣3);

2)先依據(jù)軸對稱和中心對稱的性質(zhì)得到四邊形ABCD是平行四邊形,再依據(jù)AC=BD,即可得出四邊形ABCD是矩形

1A2,3),∴點A關于直線y=x的對稱點B和關于原點的對稱點C的坐標分別為B32),C(﹣2,﹣3);

2)四邊形ABCD是矩形.理由如下

B3,2)關于原點的對稱點為D(﹣3,﹣2).

又∵點BD關于原點對稱BO=DO

同理AO=DO,∴四邊形ABCD是平行四邊形

A關于直線y=x的對稱點為BA關于原點的對稱點C,AC=BD,∴四邊形ABCD是矩形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(﹣,﹣ ),且圖象與x軸的交點到原點的距離為1,則該一次函數(shù)的解析式為:_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個大正方形和四個全等的小正方形按圖①、②兩種方式擺放,設小正方形的邊長為x,請仔細觀察圖形回答下列問題.

1)用含a、b的代數(shù)式表示x,則x   

2)用含ab的代數(shù)式表示大正方形的邊長   .(請將結果化為最簡)

3)利用前兩問的結論求出圖②的大正方形中未被小正方形覆蓋部分的面積.(用a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=D=90°,AECF分別平分∠BAD及∠DCB,則AEFC嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉180°得到△EFC,連接AF、BE.

(1)求證:四邊形ABEF是平行四邊形;

(2)∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CO1ABC的中線,過點O1O1E1ACBC于點E1,連接AE1CO1于點O2;過點O2O2E2ACBC于點E2,連接AE2CO1于點O3;過點O3O3E3ACBC于點E3,…,如此繼續(xù),可以依次得到點O4,O5,…,On和點E4,E5,…,En,則O2016E2016=_____AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CD切⊙O于點C,與BA的延長線交于點D,OEAB交⊙O于點E,連接CA、CE、CB,CEAB于點G,過點AAFCE于點F,延長AFBC于點P.

(Ⅰ)求∠CPA的度數(shù);

(Ⅱ)連接OF,若AC=,D=30°,求線段OF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知雙曲線y=(k>0)的圖象經(jīng)過RtOAB的斜邊OB的中點D,與直角邊AB相交于點C.BC=OA=6時,k=___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

同步練習冊答案