【題目】一個(gè)大正方形和四個(gè)全等的小正方形按圖①、②兩種方式擺放,設(shè)小正方形的邊長為x,請(qǐng)仔細(xì)觀察圖形回答下列問題.

1)用含ab的代數(shù)式表示x,則x   

2)用含a、b的代數(shù)式表示大正方形的邊長   .(請(qǐng)將結(jié)果化為最簡)

3)利用前兩問的結(jié)論求出圖②的大正方形中未被小正方形覆蓋部分的面積.(用ab的代數(shù)式表示)

【答案】1;(2;(3S= ab

【解析】

1)由大正方形的邊長不變,可得出關(guān)于x的一元一次方程,解之即可得出x的值(用含ab的代數(shù)式表示);

2)將x的值代入a2x,即可求出大正方形的邊長;

3)利用大正方形的面積﹣小正方形的面積,即可求出圖②的大正方形中未被小正方形覆蓋部分的面積.

解:(1a2xb+2x,

x,

故答案為:;

2)大正方形的邊長為a2xa,

故答案為:

3S=(24x2=(22ab

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BDDE,CEDE,垂足分別是D、E,AB=AC,∠BAC=90°,

1ABD≌△CAE

2)探索DEBD、CE長度之間的關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,過頂點(diǎn)A的直線DEBC,∠ABC,∠ACB的平分線分別交DE于點(diǎn)E、D,若AC=3, BC=5,則DE的長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子里共有2個(gè)黃球和3個(gè)白球,每個(gè)球除顏色外都相同,小亮從袋子中任意摸出一個(gè)球,結(jié)果是白球,則下面關(guān)于小亮從袋中摸出白球的概率和頻率的說明正確的是(  )

A. 小亮從袋中任意摸出一個(gè)球,摸出白球的概率是1

B. 小亮從袋中任意摸出一個(gè)球,摸出白球的概率是0

C. 在這次實(shí)驗(yàn)中,小亮摸出白球的頻率是1

D. 由這次實(shí)驗(yàn)的頻率去估計(jì)小亮從袋中任意摸出一個(gè)球,摸出白球的概率是1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ACBD,請(qǐng)先作圖再解決問題.

(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡.(不要求寫作法)

①作BE平分∠ABDAC于點(diǎn)E

②在BA的延長線上截取AF=BA,連接EF;

(2)判斷△BEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBCCA是∠BCD的平分線,且ABAC,AB=6,AD=4,則該四邊形的面積為(

A.9B.12C.8D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的方程x2-ax+a2-3=0至少有一個(gè)正根,則實(shí)數(shù)a的取值范圍是( 。

A. -2<a<2 B. <a≤2 C. <a≤2 D. ≤a≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(2,3)和直線y=x,

(1)點(diǎn)A關(guān)于直線y=x的對(duì)稱點(diǎn)為點(diǎn)B,點(diǎn)A關(guān)于原點(diǎn)(0,0)的對(duì)稱點(diǎn)為點(diǎn)C;寫出點(diǎn)B、C的坐標(biāo);

(2)若點(diǎn)D是點(diǎn)B關(guān)于原點(diǎn)(0,0)的對(duì)稱點(diǎn),判斷四形ABCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖1,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解答下列問題:

(1)sad60°= ;

(2)對(duì)于0°<∠A<180°,∠A的正對(duì)值sadA的取值范圍是 ;

(3)如圖②,已知sinA=,其中∠A為銳角,試求sadA的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案