【題目】在平面直角坐標(biāo)系xOy中,已知拋物線(k為常數(shù)).
(1)若拋物線經(jīng)過點(diǎn)(1,k2),求k的值;
(2)若拋物線經(jīng)過點(diǎn)(2k,y1)和點(diǎn)(2,y2),且y1>y2,求k的取值范圍;
(3)若將拋物線向右平移1個單位長度得到新拋物線,當(dāng)1≤x≤2時,新拋物線對應(yīng)的函數(shù)有最小值,求k的值.
【答案】(1);(2)k>1;(3)1或3.
【解析】
(1)把(1,k2)代入拋物線解析式中并求解即可;
(2)將點(diǎn)分別代入拋物線解析式中,由y1>y2列出關(guān)于k的不等式,求解即可;
(3)先求出新拋物線的解析式,然后分1≤k≤2,k>2以及k<1三種情況討論,根據(jù)二次函數(shù)的頂點(diǎn)及增減性,分別確定三種情況下各自對應(yīng)的最小值,然后列出方程并求出滿足題意的k值即可.
解:(1)把點(diǎn)代入拋物線,得
解得
(2)把點(diǎn)代入拋物線,得
把點(diǎn)代入拋物線,得
解得
(3)拋物線解析式配方得
將拋物線向右平移1個單位長度得到新解析式為
當(dāng)時,對應(yīng)的拋物線部分位于對稱軸右側(cè),隨的增大而增大,
時,,
,解得,
都不合題意,舍去;
當(dāng)時,,
解得;
當(dāng)時,對應(yīng)的拋物線部分位于對稱軸左側(cè),隨的增大而減小,
時,,
解得,(舍去)
綜上,或3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC的邊長為3,分別以頂點(diǎn)B、A、C為圓心,BA長為半徑作、、,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對稱圖形,設(shè)點(diǎn)l為對稱軸的交點(diǎn).
(1)如圖2,將這個圖形的頂點(diǎn)A與線段MN作無滑動的滾動,當(dāng)它滾動一周后點(diǎn)A與端點(diǎn)N重合,則線段MN的長為 ;
(2)如圖3,將這個圖形的頂點(diǎn)A與等邊△DEF的頂點(diǎn)D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無滑動的滾動當(dāng)它第一次回到起始位置時,求這個圖形在運(yùn)動過程中所掃過的區(qū)域的面積;
(3)如圖4,將這個圖形的頂點(diǎn)B與⊙O的圓心O重合,⊙O的半徑為3,將它沿⊙O的圓周作無滑動的滾動,當(dāng)它第n次回到起始位置時,點(diǎn)I所經(jīng)過的路徑長為 (請用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,點(diǎn)P由C點(diǎn)出發(fā)以2m/s的速度向終點(diǎn)A勻速移動,同時點(diǎn)Q由點(diǎn)B出發(fā)以1m/s的速度向終點(diǎn)C勻速移動,當(dāng)一個點(diǎn)到達(dá)終點(diǎn)時另一個點(diǎn)也隨之停止移動.
(1)經(jīng)過幾秒△PCQ的面積為△ACB的面積的?
(2)經(jīng)過幾秒,△PCQ與△ACB相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD⊥AC于D,CE⊥AB于E。
(1)求證:△ABD∽△ACE
(2)連接DE,求證:∠ADE=∠ABC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c,函數(shù)值y與自變量x之間的部分對應(yīng)值如下表:
x | … | ﹣4 | ﹣1 | 0 | 1 | … |
y | … | ﹣2 | ﹣1 | ﹣2 | ﹣7 | … |
(1)此二次函數(shù)圖象的對稱軸是直線,此函數(shù)圖象與x軸交點(diǎn)個數(shù)為 .
(2)求二次函數(shù)的函數(shù)表達(dá)式;
(3)當(dāng)﹣5<x<﹣1時,請直接寫出函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為微波爐生產(chǎn)廠代銷A型微波爐,售價是每臺700元,每臺可獲利潤40%.
(1)超市銷售一臺A型微波爐可獲利多少元?
(2)2019年元旦,超市決定降價銷售該微波爐,已知若按原價銷售,每天可銷售10臺,若每臺每降價5元,每天可多銷1臺,同時超市和微波爐生產(chǎn)廠協(xié)商,使現(xiàn)有微波爐的成本價,每臺減少20元,但生產(chǎn)廠商要求超市盡量增加銷售,這樣,2019元旦當(dāng)天超市銷售A型微波爐共獲利3600元,求超市在元旦當(dāng)天銷售A型微波爐的價格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年女排世界杯中,中國女排以11站全勝且只丟3局的成績成功衛(wèi)冕本屆世界杯冠軍.某校七年級為了弘揚(yáng)女排精神,組建了排球社團(tuán),通過測量同學(xué)們的身高(單位:cm),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中提供的信息,解答下列問題.
(1)填空:樣本容量為___,a=___;
(2)把頻數(shù)分布直方圖補(bǔ)充完整;
(3)若從該組隨機(jī)抽取1名學(xué)生,估計(jì)這名學(xué)生身高低于165cm的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=a,AD=b,點(diǎn)P是對角線BD上的一個動點(diǎn)(點(diǎn)P不與B、D重合),連接AP并延長交射線BC于點(diǎn)Q,
(1)當(dāng)AP⊥BD時,求△ABQ的面積(用含a、b的代數(shù)式表示).
(2)若點(diǎn)M為AD邊的中點(diǎn),連接MP交BC于點(diǎn)N,證明:點(diǎn)N也為線段BQ的中點(diǎn).
(3)如圖,當(dāng)為何值時,△ADP與△BPQ的面積之和最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0對稱軸為直線x=1,與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①abc<0;②4ac<b2;③方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;④3a+c>0;⑤當(dāng)y≥0時,x的取值范圍是﹣1≤x≤3.其中結(jié)論正確的個數(shù)是( 。
A. 1個B. 2個C. 3D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com