【題目】如圖,在△ABC中,BDACD,CEABE。

1)求證:△ABD∽△ACE

2)連接DE,求證:∠ADE=∠ABC

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】

1)由垂直的性質(zhì)可得:∠ADB=AEC=90°,又因?yàn)椤?/span>BAD=CAE,所以ABD∽△ACE;

2)由(1)可知ABD∽△ACE,所以,又因?yàn)椤?/span>BAD=CAE,所以ADE∽△ACB,由相似三角形的性質(zhì):對(duì)應(yīng)角相等,即可得到∠ADE=ABC

解:∵BD⊥ACDCE⊥ABE.

∴∠ADB=∠AEC=90,

∵∠BAD=∠CAE,

∴△ABD∽△ACE;

(2)證明:

∵△ABD∽△ACE,

∴ADAE=ABAC

∵∠BAD=∠CAE,

∴△ADE∽△ACB

∴∠ADE=∠ABC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,上的點(diǎn),為圓外一點(diǎn),、均與圓相切,設(shè),,則滿(mǎn)足的關(guān)系式為(

A.B.C.D.以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,在RtOAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,2).

1)畫(huà)出OAB向下平移3個(gè)單位長(zhǎng)度后的O1A1B1

2)畫(huà)出OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的OA2B2;

3)在(2)的條件下,求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留根號(hào)和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線軸交于點(diǎn),與軸交于,兩點(diǎn),點(diǎn)在點(diǎn)左側(cè).點(diǎn)的坐標(biāo)為,.

1)求拋物線的解析式;

2)當(dāng)時(shí),如圖所示,若點(diǎn)是第三象限拋物線上方的動(dòng)點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,三角形的面積為,求出的函數(shù)關(guān)系式,并直接寫(xiě)出自變量的取值范圍;請(qǐng)問(wèn)當(dāng)為何值時(shí),有最大值?最大值是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角三角形ABC中,ACB=90°,AC=BC=10,將△ABC繞點(diǎn)B沿順時(shí)針?lè)较蛐D(zhuǎn)90°得到△A1BC1.

(1)線段A1C1的長(zhǎng)度是 CBA1的度數(shù)是 .

(2)連結(jié)CC1,求證:四邊形CBA1C1是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)是常數(shù),)的自變量與函數(shù)值的部分對(duì)應(yīng)值如下表:

0

1

2

且當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.有下列結(jié)論:①;②3是關(guān)于的方程的兩個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線(k為常數(shù)).

(1)若拋物線經(jīng)過(guò)點(diǎn)(1,k2),求k的值;

(2)若拋物線經(jīng)過(guò)點(diǎn)(2k,y1)和點(diǎn)(2,y2),且y1>y2,求k的取值范圍;

(3)若將拋物線向右平移1個(gè)單位長(zhǎng)度得到新拋物線,當(dāng)1≤x≤2時(shí),新拋物線對(duì)應(yīng)的函數(shù)有最小值,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和同學(xué)們?cè)趯W(xué)習(xí)圓的基本性質(zhì)時(shí)發(fā)現(xiàn)了一個(gè)結(jié)論:如圖1,圓是圓中的兩條弦,于點(diǎn),于點(diǎn),若,則.

1)請(qǐng)幫小明證明這個(gè)結(jié)論;

2)請(qǐng)參考小明思考問(wèn)題的方法解決問(wèn)題,如圖2,在中,,的內(nèi)心,以為圓心,為半徑的圓與三邊分別相交于點(diǎn)、、. ,求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,解決問(wèn)題.

小聰在探索三角形中位線性質(zhì)定理證明的過(guò)程中,得到了如下啟示:一條線段經(jīng)過(guò)另一線段的中點(diǎn),則延長(zhǎng)前者,并且長(zhǎng)度相等,就能構(gòu)造全等三角形.如圖,DABCAC邊的中點(diǎn),EAB上任一點(diǎn),延長(zhǎng)EDF,使DFDE,連接CF,則可得CFD≌△AED,從而把ABC剪拼成面積相等的四邊形BCFE.你能從小聰?shù)姆此贾械玫絾⑹締幔?/span>

1)如圖1,已知ABC,試著剪一刀,使得到的兩塊圖形能拼成平行四邊形.

①把剪切線和拼成的平行四邊形畫(huà)在圖1上,并指出剪切線應(yīng)符合的條件.

②思考并回答:要使上述剪拼得到的平行四邊形成為矩形,ABC的邊或角應(yīng)符合什么條件?菱形呢?正方形呢?(直接寫(xiě)出用符號(hào)表示的條件)

2)如圖2,已知銳角ABC,試著剪兩刀,使得到的三塊圖形能拼成矩形,把剪切線和拼成的矩形畫(huà)在圖2上,并指出剪切線應(yīng)符合的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案