【題目】(1)光線(xiàn)從空氣中射入水中會(huì)產(chǎn)生折射現(xiàn)象,同時(shí)光線(xiàn)從水中射入空氣中也會(huì)產(chǎn)生折射現(xiàn)象,如圖1,光線(xiàn)a從空氣中射入水中,再?gòu)乃猩淙肟諝庵,形成光線(xiàn)b,根據(jù)光學(xué)知識(shí)有∠1=∠2,∠3=∠4,請(qǐng)判斷光線(xiàn)a與光線(xiàn)b是否平行,并說(shuō)明理由;
(2)如圖2,直線(xiàn)EF上有兩點(diǎn)A、C,分別引兩條射線(xiàn)AB、CD.已知∠BAF=150°,∠DCF=80°,射線(xiàn)AB、CD分別繞點(diǎn)A、點(diǎn)C以1度/秒和3度/秒的速度同時(shí)順時(shí)針轉(zhuǎn)動(dòng),設(shè)時(shí)間為t秒,當(dāng)射線(xiàn)CD轉(zhuǎn)動(dòng)一周時(shí),兩條射線(xiàn)同時(shí)停止.則當(dāng)直線(xiàn)CD與直線(xiàn)AB互相垂直時(shí),t= 秒.
【答案】(1)平行.理由見(jiàn)解析;(2)20或110.
【解析】
(1)依據(jù)題意得出∠1+∠5=∠2+∠6,即可得到a∥b;
(2)分兩種情況討論:當(dāng)BA⊥CD于G時(shí),∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°;當(dāng)D'C⊥AB于H時(shí),∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,分別依據(jù)角的和差關(guān)系進(jìn)行計(jì)算即可.
解:(1)平行.理由如下:
如圖1,∵∠3=∠4,
∴∠5=∠6,
∵∠1=∠2,
∴∠1+∠5=∠2+∠6,
∴a∥b;
(2)如圖,當(dāng)BA⊥CD于G時(shí),∠BAE=30°+t°=∠CAG,∠ACG=180°﹣80°﹣3t°=100°﹣3t°,
∵∠CAG+∠ACG=90°,
∴30°+t°+100°﹣3t°=90°,
解得t=20;
如圖,當(dāng)D'C⊥AB于H時(shí),∠BAE=30°+t°,∠ACH=3t°﹣180°﹣100°,
∵∠BAE=∠ACH+∠AHC,
∴30°+t°=3t°﹣180°﹣100°+90°,
解得t=110,
綜上所述,當(dāng)直線(xiàn)CD與直線(xiàn)AB互相垂直時(shí)t的值為20或110.
故答案為:20或110.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明四等分弧AB,他的作法如下:
①連接AB(如圖);作AB的垂直平分線(xiàn)CD交弧AB于點(diǎn)M,交AB于點(diǎn)T;
②分別作AT,TB的垂直平分線(xiàn)EF,GH,交弧AB于N,P兩點(diǎn),則N,M,P三點(diǎn)把弧AB四等分。你認(rèn)為小明的作法是否正確: , 理由是。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線(xiàn),DE,DF分別是△ABD和△ACD的高.得到下面四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠A=90°時(shí),四邊形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述結(jié)論中正確的是( )
A. ②③ B. ②④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線(xiàn)段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6 ,AF=4 ,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=80°,∠2=100°,∠C=∠D.
(1)判斷AC與DF的位置關(guān)系,并說(shuō)明理由;
(2)若∠C比∠A大20°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四邊形周長(zhǎng)為32,求BC和CD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別為a、b、c,下列說(shuō)法中錯(cuò)誤的是( )
A.如果∠C-∠B=∠A,則△ABC是直角三角形,且∠C=90;
B.如果,則△ABC是直角三角形,且∠C=90;
C.如果(c+a)( c-a)=,則△ABC是直角三角形,且∠C=90;
D.如果∠A:∠B:∠C=3:2:5,則△ABC是直角三角形,且∠C=90.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
在學(xué)習(xí)“可化為一元一次方程的分式方程及其解法”的過(guò)程中,老師提出一個(gè)問(wèn)題:若關(guān)于x的分式方程=1的解為正數(shù),求a的取值范圍.
經(jīng)過(guò)獨(dú)立思考與分析后,小杰和小哲開(kāi)始交流解題思路如下:
小杰說(shuō):解這個(gè)關(guān)于x的分式方程,得x=a+4.由題意可得a+4>0,所以a>﹣4,問(wèn)題解決.
小哲說(shuō):你考慮的不全面,還必須保證x≠4,即a+4≠4才行.
(1)請(qǐng)回答: 的說(shuō)法是正確的,并簡(jiǎn)述正確的理由是 ;
(2)參考對(duì)上述問(wèn)題的討論,解決下面的問(wèn)題:
若關(guān)于x的方程的解為非負(fù)數(shù),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,lA、lB分別表示A步行與B騎車(chē)在同一路上行駛的路程S與時(shí)間t的關(guān)系.
(1)B出發(fā)時(shí)與A相距_____千米.
(2)走了一段路后,自行車(chē)發(fā)生故障進(jìn)行修理,所用的時(shí)間是____小時(shí).
(3)B出發(fā)后_____小時(shí)與A相遇.
(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式.(寫(xiě)出計(jì)算過(guò)程)
(5)請(qǐng)通過(guò)計(jì)算說(shuō)明:若B的自行車(chē)不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),何時(shí)與A相遇?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com