【題目】教材呈現(xiàn):如圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第78頁(yè)的部分內(nèi)容.
例2 如圖,在中,分別是邊的中點(diǎn),相交于點(diǎn),求證:,
證明:連結(jié).
請(qǐng)根據(jù)教材提示,結(jié)合圖①,寫出完整的證明過(guò)程.
結(jié)論應(yīng)用:在中,對(duì)角線交于點(diǎn),為邊的中點(diǎn),、交于點(diǎn).
(1)如圖②,若為正方形,且,則的長(zhǎng)為 .
(2)如圖③,連結(jié)交于點(diǎn),若四邊形的面積為,則的面積為 .
【答案】教材呈現(xiàn):詳見(jiàn)解析;結(jié)論應(yīng)用:(1);(2)6.
【解析】
教材呈現(xiàn):如圖①,連結(jié).根據(jù)三角形中位線定理可得,,那么,由相似三角形對(duì)應(yīng)邊成比例以及比例的性質(zhì)即可證明;
結(jié)論應(yīng)用:(1)如圖②.先證明,得出,那么,又,可得,由正方形的性質(zhì)求出,即可求出;
(2)如圖③,連接.由(1)易證.根據(jù)同高的兩個(gè)三角形面積之比等于底邊之比得出與的面積比,同理,與的面積比=2,那么的面積的面積=2(的面積的面積)=,所以的面積,進(jìn)而求出的面積.
教材呈現(xiàn):
證明:
如圖①,連結(jié).
∵在中,分別是邊的中點(diǎn),
∴,
∴,
∴,
∴,
∴;
結(jié)論應(yīng)用:
(1)解:如圖②.
∵四邊形為正方形,為邊的中點(diǎn),對(duì)角線、交于點(diǎn),
∴,
∴,
∴,
∴,
∴,
∵,
∴,
∵正方形中,,
∴,
∴.
故答案為;
(2)解:如圖③,連接.
由(1)知,,
∴.
∵與的高相同,
∴與的面積比,
同理,與的面積比=2,
∴的面積的面積=2(的面積的面積),
∴的面積,
∴的面積.
故答案為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD與拋物線y=﹣x2+bx+c相交于點(diǎn)A,B,D,點(diǎn)C在拋物線的對(duì)稱軸上,已知點(diǎn)B(﹣1,0),BC=4.
(1)求拋物線的解析式;
(2)求BD的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+3與x軸交于點(diǎn)A(﹣1,0),B(3,0).
(1)求拋物線的解析式;
(2)過(guò)點(diǎn)D(0,)作x軸的平行線交拋物線于E,F兩點(diǎn),求EF的長(zhǎng);
(3)當(dāng)y≤時(shí),直接寫出x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有甲,乙兩種機(jī)器人都被用來(lái)搬運(yùn)某體育館室內(nèi)裝潢材料甲型機(jī)器人比乙型機(jī)器人每小時(shí)少搬運(yùn)30千克,甲型機(jī)器人搬運(yùn)600千克所用的時(shí)間與乙型機(jī)器人搬運(yùn)800千克所用的時(shí)間相同,兩種機(jī)器人每小時(shí)分別搬運(yùn)多少千克?設(shè)甲型機(jī)器人每小時(shí)搬運(yùn)x千克,根據(jù)題意,可列方程為( )
A. =B. =
C. =D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形中,是中點(diǎn),點(diǎn)從點(diǎn)出發(fā)沿的路線勻速運(yùn)動(dòng),到點(diǎn)停止,點(diǎn)從點(diǎn)出發(fā),沿路線勻速運(yùn)動(dòng),、兩點(diǎn)同時(shí)出發(fā),點(diǎn)的速度是點(diǎn)速度的倍,當(dāng)點(diǎn)停止時(shí),點(diǎn)也同時(shí)停止運(yùn)動(dòng),設(shè)秒時(shí),正方形與重疊部分的面積為,關(guān)于的函數(shù)關(guān)系如圖2所示,則
(1)求正方形邊長(zhǎng);
(2)求的值;
(3)求圖2中線段所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)寫出y隨x的增大而減小的自變量x的取值范圍;
(3)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個(gè)圖形,a 、b 、c 是 RtABC和 RtBED 的邊長(zhǎng),已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱為“勾系一元二次方程”.
請(qǐng)解決下列問(wèn)題:
(1)寫出一個(gè)“勾系一元二次方程”;
(2)求證:關(guān)于 x 的“勾系一元二次方程”,必有實(shí)數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個(gè)根,且四邊形 ACDE 的周長(zhǎng)是6,求ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點(diǎn)F,設(shè)AB=m,BC=n.下列結(jié)論①∠BDA=∠ECA; ②若m=,n=3,∠ABC=75°,則BD=;③當(dāng)∠ABC=135°時(shí),BD最大,最大值為m+n;④AE2=BF2+EF2中正確的有_______。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com