【題目】如圖,已知矩形ABCD的長和寬分別為16cm和12cm,連接其對邊中點,得到四個矩形,順次連接矩形AEFG各邊中點,得到菱形l1;連接矩形FMCH對邊中點,又得到四個矩形,順次連接矩形FNPQ各邊中點,得到菱形l2;…如此操作下去,則l4的面積是cm2

【答案】
【解析】解:∵矩形ABCD的長和寬分別為16cm和12cm,

∴EF=8cm,AE=6cm,

∴菱形l1的面積= ×8×6=24cm2,

同理,菱形l2的面積= ×4×36cm2,

則菱形l3的面積= ×2× = cm2,

∴菱形l4的面積= ×1× = cm2,

所以答案是:


【考點精析】關(guān)于本題考查的菱形的性質(zhì),需要了解菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:用3A型車和2B型車載滿貨物一次可運貨共19噸;用2A型車和3B型車載滿貨物一次可運貨共21噸.

(1)1A型車和1B型車都載滿貨物一次分別可以運貨多少噸?

(2)某物流公司現(xiàn)有49噸貨物,計劃同時租用A型車輛,B型車輛,一次運完,且恰好每輛車都載滿貨物.

、的值;

A型車每輛需租金130/,B型車每輛需租金200/請求出租車費用最少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列不等式(),并把解集在數(shù)軸上表示出來:

(1)

(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】DEF中,DE=DF,點BEF邊上,且∠EBD=60°,C是射線BD上的一個動點(不與點B重合,且BC≠BE),在射線BE上截取BA=BC,連接AC.

(1)當點C在線段BD上時,

①若點C與點D重合,請根據(jù)題意補全圖1,并直接寫出線段AEBF的數(shù)量關(guān)系為________;

②如圖2,若點C不與點D重合,請證明AE=BF+CD;

(2)當點C在線段BD的延長線上時,用等式表示線段AE,BF,CD之間的數(shù)量關(guān)系,不用證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,AB為半圓O的直徑,C為圓上一點,AD平分∠BAC交半圓于點D,過點D作DE⊥AC,DE交AC的延長線于點E.

(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑為2,DE= ,求線段AC的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C、D在線段AB上,△PCD是等邊三角形,且△ACP∽△PDB,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:

某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一坐標系中,函數(shù) 的圖像大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=65°∠C=45°,AD是BC邊上的高,AE是∠BAC的平線,求∠DAE的度數(shù)?

查看答案和解析>>

同步練習冊答案