【題目】如圖,菱形ABCD的對(duì)角線ACBD相交于點(diǎn)O,EAD的中點(diǎn),點(diǎn)F,GAB上,EFAB,OGEF

1)求證:四邊形OEFG是矩形;

2)若AD=10,EF=4,求OEBG的長(zhǎng).

【答案】(1)見解析;(2)OE=5,BG=2.

【解析】

(1)先證明EO△DAB的中位線,再結(jié)合已知條件OG∥EF,得到四邊形OEFG是平行四邊形,再由條件EF⊥AB,得到四邊形OEFG是矩形

(2)先求出AE=5,由勾股定理進(jìn)而得到AF=3,再由中位線定理得到OE=AB=AD=5,得到FG=5,最后BG=AB-AF-FG=2.

解:(1)證明:∵四邊形ABCD為菱形,

點(diǎn)OBD的中點(diǎn),

點(diǎn)EAD中點(diǎn),

∴OE△ABD的中位線,

∴OE∥FG

∵OG∥EF,四邊形OEFG為平行四邊形

∵EF⊥AB,平行四邊形OEFG為矩形.

(2)∵點(diǎn)EAD的中點(diǎn),AD=10,

∴AE=

∵∠EFA=90°EF=4,

Rt△AEF中,

四邊形ABCD為菱形,

∴AB=AD=10,

∴OE=AB=5,

四邊形OEFG為矩形,

∴FG=OE=5

∴BG=AB-AF-FG=10-3-5=2.

故答案為:OE=5,BG=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,菱形ABCD中,E,F分別是對(duì)角線BD和邊BC上一點(diǎn),且滿足∠EAF=ABD=

1)如圖(1),當(dāng)=45°時(shí),求證:AF=AE

2)如圖(2),探究AFAE的數(shù)量關(guān)系(用含的銳角三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游泳館每年夏季推出兩種游泳付費(fèi)方式,方式一:先購(gòu)買會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)5元;方式二:不購(gòu)買會(huì)員證,每次游泳付費(fèi)9元.

設(shè)小明計(jì)劃今年夏季游泳次數(shù)為x(x為正整數(shù)).

(I)根據(jù)題意,填寫下表:

游泳次數(shù)

10

15

20

x

方式一的總費(fèi)用(元)

150

175

______

______

方式二的總費(fèi)用(元)

90

135

______

______

(Ⅱ)若小明計(jì)劃今年夏季游泳的總費(fèi)用為270元,選擇哪種付費(fèi)方式,他游泳的次數(shù)比較多?

(Ⅲ)當(dāng)x>20時(shí),小明選擇哪種付費(fèi)方式更合算?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩輛汽車沿同一公路從A地出發(fā)前往路程為100千米的B地,乙車比甲車晚出發(fā)15分鐘,行駛過(guò)程中所行駛的路程分別用y1、y2(千米)表示,它們與甲車行駛的時(shí)間x(分鐘)之間的函數(shù)關(guān)系如圖所示.

1)分別求出y1y2關(guān)于x的函數(shù)解析式并寫出定義域;

2)乙車行駛多長(zhǎng)時(shí)間追上甲車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中, AB=3,BC=4,將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),點(diǎn)A、BD的對(duì)應(yīng)點(diǎn)分別為A’ 、B’、 D’,當(dāng)A’ 落在邊CD的延長(zhǎng)線上時(shí),邊A’ D’ 與邊 AD的延長(zhǎng)線交于點(diǎn)F,聯(lián)結(jié)CF,那么線段CF的長(zhǎng)度為____


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為拋物線上任意兩點(diǎn),其中

1)若拋物線的對(duì)稱軸為,當(dāng)為何值時(shí),

2)設(shè)拋物線的對(duì)稱軸為.若對(duì)于,都有,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】廣元市某中學(xué)舉行了“禁毒知識(shí)競(jìng)賽”,王老師將九年級(jí)(1)班學(xué)生成績(jī)劃分為A、B、C、D、E五個(gè)等級(jí),并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:

1)求九年級(jí)(1)班共有多少名同學(xué)?

2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“C”所對(duì)應(yīng)的圓心角度數(shù);

3)成績(jī)?yōu)?/span>A類的5名同學(xué)中,有2名男生和3名女生;王老師想從這5名同學(xué)中任選2名同學(xué)進(jìn)行交流,請(qǐng)用列表法或畫樹狀圖的方法求選取的2名同學(xué)都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四張質(zhì)地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.

(1)求隨機(jī)抽取一張卡片,恰好得到數(shù)字2的概率;

(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)用列表法或畫樹形圖法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 已知點(diǎn)A為x軸上的一動(dòng)點(diǎn),其坐標(biāo)為(m,0)點(diǎn)B的坐標(biāo)為(,0),在x軸上方取點(diǎn)C,使CBx軸,且CB=2AO,點(diǎn)C,關(guān)于直線對(duì)稱,交直線于點(diǎn)E若△BOE的面積為4,則點(diǎn)E的坐標(biāo)為________

查看答案和解析>>

同步練習(xí)冊(cè)答案