【題目】數(shù)學課外興趣小組的同學們要測量被池塘相隔的兩棵樹AB的距離,他們設計了如圖的測量方案:從樹A沿著垂直于AB的方向走到E,再從E沿著垂直于AE的方向走到F,CAE上一點,其中4位同學分別測得四組數(shù)據(jù):①AC,∠ACB;②EFDE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADBFB.其中能根據(jù)所測數(shù)據(jù)求得A,B兩樹距離的有( )

A.1B.2C.3D.4

【答案】C

【解析】

根據(jù)三角函數(shù)的定義及相似三角形的判定定理及性質對各選項逐一判斷即可得答案.

∵已知∠ACB的度數(shù)和AC的長,

∴利用∠ACB的正切可求出AB的長,故①能求得A,B兩樹距離,

AB//EF

∴△ADB△EDF,

,故②能求得A,B兩樹距離,

ACx,

ADCD+x,AB,AB;

∵已知CD,∠ACB,∠ADB,

∴可求出x,然后可得出AB,故③能求得A,B兩樹距離,

已知∠F,∠ADB,FB不能求得A,B兩樹距離,故④求得AB兩樹距離,

綜上所述:求得AB兩樹距離的有①②③,共3個,

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(30),C(03),點M是拋物線的頂點.

1)求二次函數(shù)的關系式;

2)點P為線段MB上一個動點,過點PPDx軸于點D.若ODm,△PCD的面積為S,

①求Sm的函數(shù)關系式,寫出自變量m的取值范圍.

②當S取得最值時,求點P的坐標;

3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠ACB45°AEBC于點E,過點CCFAB于點F,交AE于點M.點N在邊BC上,且AMCN,連結DN

1)若AB,AC4,求BC的長;

2)求證:AD+AMDN

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生的藝術特長發(fā)展情況,某校決定圍繞“在舞蹈、樂器、聲樂、戲曲、其它活動項目中,你最喜歡哪一項活動(每人只限一項)”的問題,在全校范圍內隨機抽取部分學生進行問卷調查,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖解答下列問題:

1)扇形統(tǒng)計圖中“戲曲”部分對應的扇形的圓心角為   度;

2)若在“舞蹈、樂器、聲樂、戲曲”項目中任選兩項成立課外興趣小組,請用列舉法求恰好選中“舞蹈、聲樂”這兩項的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是拋物線y=﹣x2+x+2在第一象限上的點,過點P分別向x軸和y軸引垂線,垂足分別為A,B,則四邊形OAPB周長的最大值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生會要舉辦一個校園書畫藝術展覽會,為國慶獻禮,小華和小剛準備將長AD400cm,寬AB130cm的矩形作品四周鑲上彩色紙邊裝飾,如圖所示,兩人在設計時要求內外兩個矩形相似,矩形作品面積是總面積的,他們一致認為上下彩色紙邊要等寬,左右彩色紙邊要等寬,這樣效果最好,請你幫助他們設計彩色紙邊寬度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線

(1)求拋物線的對稱軸;

(2)時,設拋物線與軸交于兩點(在點左側),頂點為,若為等邊三角形,求的值;

(3)(其中)且垂直軸的直線與拋物線交于兩點.若對于滿足條件的任意值,線段的長都不小于1,結合函數(shù)圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則( )

A. DE=EB B. DE=EB C. DE=DO D. DE=OB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)有一半徑為8m的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線.在距水池中心3m處達到最高,高度為5m,且各個方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.以水平方向為x軸,噴水池中心為原點建立如圖所示的平面直角坐標系.

1)求水柱所在拋物線對應的函數(shù)關系式;

2)王師傅在噴水池維修設備期間,噴水管意外噴水,為了不被淋濕,身高1.8m的王師傅站立時必須在離水池中心多少米以內?

查看答案和解析>>

同步練習冊答案