【題目】如圖
(1)畫出△ABC關于y軸對稱的圖形△A1B1C1;
(2)在x軸上是否存在點P,使得PA+PB最短,最短距離是多少?
(3)直接寫出A1B1C1三點的坐標.
【答案】(1)見解析;(2);(3)點A1(2,3),點B1(3,1),點C1(1,-2).
【解析】
(1)根據關于y軸對稱點的坐標特點:橫坐標互為相反數,縱坐標不變,畫出△ABC關于y軸對稱的圖形△A1B1C1即可;(2)作點B關于x軸的對稱點B2,連接B2A,交x軸于點P,此時PA+PB最短,即PA+PB=AB2,再利用勾股定理求出AB2的長即可;(3)根據直角坐標系中的三角形,直接寫出A1、B1、C1三點的坐標即可.
(1)∵關于y軸對稱點的坐標特點:橫坐標互為相反數,縱坐標不變
∴如圖所示:△A1B1C1就是所求作的三角形.
(2)作點B關于x軸的對稱點B2,連接B2A,交x軸于點P,此時PA+PB最短,
∴PA+PB=AB2==,
∴最短距離為:;
(3)點A1(2,3),點B1(3,1),點C1(1,-2).
科目:初中數學 來源: 題型:
【題目】某公司為了擴大經營,決定購進6臺機器用于生產某活塞.現有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產活塞的數量如下表所示.經過預算,本次購買機器所耗資金不能超過34萬元.
甲 | 乙 | |
價格(萬元/臺) | 7 | 5 |
每臺日產量(個) | 100 | 60 |
(1)按該公司要求可以有幾種購買方案?
(2)如果該公司購進的6臺機器的日生產能力不能低于380個,那么為了節(jié)約資金應選擇什么樣的購買方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點O(0,0),A(﹣1,2),B(2,1).
(1)在圖中畫出△AOB關于y軸對稱的△A1OB1,并直接寫出點A1和點B1的坐標;(不寫畫法,保留畫圖痕跡)
(2)在x軸上存在點P,使得PA+PB的值最小,則點P的坐標為 ,PA+PB的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補選一個,則錯誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1是一個長為、寬為的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成一個“回形”正方形(如圖2)
(1)觀察圖2請你寫出、、之間的等量關系是______;
(2)根據(1)中的結論,若,,則______;
(3)拓展應用:若,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D,E分別是AB,AC的中點,BE是∠ABC的平分線,對于下列結論:①BC=2DE;②DE∥BC;③BD=DE;④BE⊥AC.其中正確的是 ( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于點E.
(1)如圖1,連接EC,求證:△EBC是等邊三角形;
(2)點M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作∠BMG=60°,MG交DE延長線于點G.請你在圖2中畫出完整圖形,并直接寫出MD,DG與AD之間的數量關系;
(3)如圖3,點N是線段AD上的一點,以BN為一邊,在BN的下方作∠BNG=60°,NG交DE延長線于點G.試探究ND,DG與AD數量之間的關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面說法錯誤的是( )
A.過一點有且只有一條直線與已知直線垂直.
B.在同一個平面內,任意三條直線相交,交點的個數最多有3個
C.平行于同一直線的兩條直線平行.
D.兩條平行線被第三條直線所截,一對內錯角的平分線互相平行.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com