【題目】菱形ABCD中,∠B=60°,點(diǎn)E,F分別是BC,CD上的兩個(gè)動(dòng)點(diǎn),且始終保持∠AEF=60°.

1)試判斷△AEF的形狀并說(shuō)明理由;

2)若菱形的邊長(zhǎng)為2,求△ECF周長(zhǎng)的最小值.

【答案】(1)△AEF是等邊三角形,理由詳見(jiàn)解析;(22+

【解析】

1)先根據(jù)四邊形ABCD是菱形判斷出ABC的形狀,再由ASA定理得出AGE≌△ECF,故可得出AEAF,由此可得出結(jié)論;
2)根據(jù)垂線段最短可知當(dāng)AEBC時(shí)ECF周長(zhǎng)最小,由直角三角形的性質(zhì)求出AE的長(zhǎng),故可得出結(jié)論.

解:(1AEF是等邊三角形,理由是:

∵四邊形ABCD是菱形,

ABBC

∵∠B60°

∴△ABC是等邊三角形,

AB上截取BG=BE,則BGE是等邊三角形

AG=AB-BG=BC-BE=EC

∵∠AEC=∠BAE+∠B=∠AEF+FEC,又因?yàn)椤?/span>B=AEF=60°

∴∠BAE=∠CEF

AGEECF中,

AGE=∠ECF=120°,AG=EC,GAE=CEF

∴△AGE≌△ECFASA),

AEEF

∵∠AEF60°,

∴△AEF是等邊三角形.

2)由(1)知AEF是等邊三角形,AGE≌△ECF

所以CF=GE=BE,CF+EC=BC=定值=2

∵垂線段最短,

∴當(dāng)AEBC時(shí),AE=EF最小,此時(shí)ECF周長(zhǎng)最小、

BC2,∠B60°,

AE,

ECF周長(zhǎng)的最小值=2+.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為極大地滿足人民生活的需求,豐富市場(chǎng)供應(yīng),某區(qū)農(nóng)村溫棚設(shè)施農(nóng)業(yè)迅速發(fā)展,溫棚種植面積在不斷擴(kuò)大.在耕地上培成一行一行的長(zhǎng)方形土埂,按順序間隔種植不同農(nóng)作物的方法叫分壟間隔套種.科學(xué)研究表明:在塑料溫棚中分壟間隔套種高、矮不同的蔬菜和水果(同一種緊挨在一起種植不超過(guò)兩壟),可增加它們的光合作用,提高單位面積的產(chǎn)量和經(jīng)濟(jì)效益.

現(xiàn)有一個(gè)種植總面積為540 m2的長(zhǎng)方形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過(guò)14(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤(rùn)分別如下:

占地面積(m2/)

產(chǎn)量(千克/)

利潤(rùn)(/千克)

西紅柿

30

160

1.1

草莓

15

50

1.6

(1)若設(shè)草莓共種植了壟,通過(guò)計(jì)算說(shuō)明共有幾種種植方案,分別是哪幾種;

(2)在這幾種種植方案中,哪種方案獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3BC=4DC=12,AD=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,.

1)用尺規(guī)作圖法作,與邊交于點(diǎn)(保留作題痕跡,不用寫作法);

2)在(1)的條件下,當(dāng)時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC 內(nèi)有一點(diǎn)D,AD=5,BD=6,CD=4,將線段AD繞點(diǎn)A旋轉(zhuǎn)到AE,使∠DAE=BAC,連接EC.

(1)求CE的長(zhǎng);

(2)求cosCDE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式,并探究

……

1)寫出第④個(gè)等式:______;

2)某同學(xué)發(fā)現(xiàn),四個(gè)連續(xù)自然數(shù)的積加上1后,結(jié)果都將是某一個(gè)整數(shù)的平方.當(dāng)這四個(gè)數(shù)較大時(shí)可以進(jìn)行簡(jiǎn)便計(jì)算,如:

請(qǐng)你猜想寫出第n個(gè)等式,用含有n的代數(shù)式表示,并通過(guò)計(jì)算驗(yàn)證你的猜想.

3)任何實(shí)數(shù)的平方都是非負(fù)數(shù)(即),一個(gè)非負(fù)數(shù)與一個(gè)正數(shù)的和必定是一個(gè)正數(shù)(即時(shí),).根據(jù)以上的規(guī)律和方法試說(shuō)明:無(wú)論x為什么實(shí)數(shù),多項(xiàng)式的值永遠(yuǎn)都是正數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)AC分別在x軸和y軸上,頂點(diǎn)B的坐標(biāo)為(n2),點(diǎn)EAB的中點(diǎn),在OA上取一點(diǎn)D,將BAD沿BD翻折,點(diǎn)A剛好落在BC邊上的F處,BDEF交于點(diǎn)P

1)直接寫出點(diǎn)E、F的坐標(biāo);

2)若OD=1,求P點(diǎn)的坐標(biāo);

3)動(dòng)點(diǎn)QP點(diǎn)出發(fā),依次經(jīng)過(guò)F,y軸上的點(diǎn)M,x軸上的點(diǎn)N,然后返回到P點(diǎn):

①若要使Q點(diǎn)運(yùn)動(dòng)一周的路徑最短,試確定MN的位置;

②若n=3,求最短路徑的四邊形PFMN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】你知道古代數(shù)學(xué)家怎樣解一元二次方程嗎?以x22x3=0為例,大致過(guò)程如下:第一步:將原方程變形為x22x=3,即xx2=3

第二步:構(gòu)造一個(gè)長(zhǎng)為x,寬為(x2)的長(zhǎng)方形,長(zhǎng)比寬大2,且面積為3,如圖所示.

第三步:用四個(gè)這樣的長(zhǎng)方形圍成一個(gè)大正方形,中間是一個(gè)小正方形,如圖所示.

第四步:計(jì)算大正方形面積用x表示為     .長(zhǎng)方形面積為常數(shù)   .小正方形面積為常數(shù)  

由觀察可得,大正方形面積等于四個(gè)長(zhǎng)方形與小正方形面積之和,得方程    ,兩邊開方可求得:x1=3,x2=1

1)第四步中橫線上應(yīng)填入          ;          

2)請(qǐng)參考古人的思考過(guò)程,畫出示意圖,寫出步驟,解方程x2x1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷售一種銷售成本為每千克30元的水產(chǎn)品,據(jù)市場(chǎng)分析,若按每千克40元銷售,一個(gè)月能售出500千克;銷售單價(jià)每漲1元,月銷售量就減少10千克,針對(duì)這種情況,請(qǐng)解答以下問(wèn)題:

1)當(dāng)銷售單價(jià)定為每千克45元時(shí),計(jì)算月銷售量和月銷售利潤(rùn);

2)該商店想在月銷售成本不超過(guò)10000元的情況下,使得月銷售利潤(rùn)達(dá)到8000元,銷售單價(jià)應(yīng)定為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案