【題目】如圖,在等邊△ABC 內(nèi)有一點(diǎn)D,AD=5,BD=6,CD=4,將線段AD繞點(diǎn)A旋轉(zhuǎn)到AE,使∠DAE=∠BAC,連接EC.
(1)求CE的長(zhǎng);
(2)求cos∠CDE的值.
【答案】(1)6;(2)
【解析】試題分析:(1)先根據(jù)等邊三角形的性質(zhì)得AB=AC,∠BAC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,
(2)判斷△ADE為等邊三角形,得到DE=AD=5過(guò)E點(diǎn)作EH⊥CD于H,如圖,設(shè)DH=x,則CH=4﹣x,利用勾股定理得到52﹣x2=62﹣(4﹣x)2,計(jì)算得出 ,然后根據(jù)余弦的定義求解.
解:(1)∵△ABC為等邊三角形,
∴AB=AC,∠BAC=60°,
∵△ABD繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)得△ACE,
∴AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,
(2)∵AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,
∴△ADE為等邊三角形,
∴DE=AD=5,
過(guò)E點(diǎn)作EH⊥CD于H,如圖,設(shè)DH=x,則CH=4﹣x,
在Rt△DHE中,EH2=52﹣x2,
在Rt△CHE中,EH2=62﹣(4﹣x)2,
∴52﹣x2=62﹣(4﹣x)2,解得x=,
∴DH=,
在Rt△EDH中,cos∠HDE=,
即∠CDE的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綿陽(yáng)農(nóng)科所為了考察某種水稻穗長(zhǎng)的分布情況,在一塊試驗(yàn)田里隨機(jī)抽取了50個(gè)谷穗作為樣本,量得它們的長(zhǎng)度(單位:cm),對(duì)樣本數(shù)據(jù)適當(dāng)分組后,列出了如下頻數(shù)分布表:
穗長(zhǎng)/cm | 4.5≤x<5 | 5≤x<5.5 | 5.5≤x<6 |
頻數(shù) | 4 | 8 | 12 |
穗長(zhǎng)/cm | 6≤x<6.5 | 6.5≤x<7 | 7≤x<7.5 |
頻數(shù) | 13 | 10 | 3 |
(1)在圖中畫頻數(shù)分布直方圖;
(2)請(qǐng)你對(duì)這塊試驗(yàn)田的水稻穗長(zhǎng)進(jìn)行分析;并計(jì)算出這塊實(shí)驗(yàn)田里穗長(zhǎng)在5.5≤x<7范圍內(nèi)的谷穗所占的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當(dāng)有n張桌子時(shí),兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個(gè)餐廳的經(jīng)理,你打算選擇哪種方式來(lái)擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價(jià)比乙種羽毛球每筒的售價(jià)多15元,健民體育活動(dòng)中心從該網(wǎng)店購(gòu)買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價(jià)各是多少元?
(2)根據(jù)健民體育活動(dòng)中心消費(fèi)者的需求量,活動(dòng)中心決定用不超過(guò)2550元錢購(gòu)進(jìn)甲、乙兩種羽毛球共50筒,那么最多可以購(gòu)進(jìn)多少筒甲種羽毛球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列一段文字,然后回答下列問(wèn)題.
已知在平面內(nèi)有兩點(diǎn)P1(x1,y1)、P2(x2,y2),其兩點(diǎn)間的距離P1P2=,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可化簡(jiǎn)為|x2﹣x1|或|y2﹣y1|.已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為D(1,6)、E(4,2),平面直角坐標(biāo)系中,在x軸上找一點(diǎn)P,使PD+PE的長(zhǎng)度最短,則PD+PE的最短長(zhǎng)度為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,∠B=60°,點(diǎn)E,F分別是BC,CD上的兩個(gè)動(dòng)點(diǎn),且始終保持∠AEF=60°.
(1)試判斷△AEF的形狀并說(shuō)明理由;
(2)若菱形的邊長(zhǎng)為2,求△ECF周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(-1,8)并與x軸交于A,B兩點(diǎn),且點(diǎn)B坐標(biāo)為(3,0).
(1)求拋物線的表達(dá)式;
(2)若拋物線與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)P,求△CPB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在□ABCD中,E為BC的中點(diǎn),過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F,延長(zhǎng)DC,交FE的延長(zhǎng)線于點(diǎn)G,連結(jié)DF,已知∠FDG=45°
(1)求證:GD=GF.
(2)已知BC=10, .求 CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為2cm的正方形ABCD沿其對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動(dòng)的距離AA′等于( )
A. 0.5cm B. 1cm C. 1.5cm D. 2cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com