【題目】如圖所示,在平面直角坐標(biāo)系中,四邊形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC與y軸相交于點(diǎn)M,且M是BC的中點(diǎn),A,B,D三點(diǎn)的坐標(biāo)分別是A(﹣1,0),B(﹣l,2),D(3,0).連接DM,并把線段DM沿DA方向平移到ON.若拋物線y=ax2+bx+c經(jīng)過點(diǎn)D,M,N.

(1)求拋物線的解析式.
(2)拋物線上是否存在點(diǎn)P,使得PA=PC?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為E,點(diǎn)Q是拋物線的對稱軸上的一個(gè)動點(diǎn),當(dāng)點(diǎn)Q在什么位置時(shí)有|QE﹣QC|最大?并求出最大值.

【答案】
(1)解:∵BC∥AD,B(﹣1,2),M是BC與y軸的交點(diǎn),∴M(0,2),

∵DM∥ON,D(3,0),

∴N(﹣3,2),

,

解得 ,

∴y=﹣ x2 x+2


(2)解:方法一:連接AC交y軸于G,

∵M(jìn)是BC的中點(diǎn),

∴AO=BM=MC,AB=BC=2,

∴AG=GC,即G(0,1),

∵∠ABC=90°,

∴BG⊥AC,即BG是AC的垂直平分線,要使PA=PC,即點(diǎn)P在AC的垂直平分線上,故P在直線BG上,

∴點(diǎn)P為直線BG與拋物線的交點(diǎn),

設(shè)直線BG的解析式為y=kx+b,

解得 ,

∴y=﹣x+1,

,

解得 ,

∴點(diǎn)P(3+3 ,﹣2﹣3 )或P(3﹣3 ,﹣2+3

方法二:∵M(jìn)是BC的中點(diǎn)M(0,2),B(﹣1,2),

∴C(1,2),

設(shè)P(t,﹣ ),A(﹣1,0),C(1,2),

∵PA=PC,

∴(t+1)2+(﹣ 2=(t﹣1)2+(﹣ 2,

t2+2t+1+(﹣ 2+4(﹣ )+4=t2﹣2t+1+(﹣ 2,

∴t2﹣6t﹣9=0,t1=3+3 ,t2=3﹣3 ,

∴P1(3+3 ,﹣2﹣3 ),P2(3﹣3 ,﹣2+3


(3)解:方法一:∵y=﹣ x2 x+2=﹣ (x+ 2+2

∴對稱軸x=﹣ ,

令﹣ x2 x+2=0,

解得x1=3,x2=﹣6,

∴E(﹣6,0),

故E、D關(guān)于直線x=﹣ 對稱,

∴QE=QD,

∴|QE﹣QC|=|QD﹣QC|,

要使|QE﹣QC|最大,則延長DC與x=﹣ 相交于點(diǎn)Q,即點(diǎn)Q為直線DC與直線x=﹣ 的交點(diǎn),

由于M為BC的中點(diǎn),

∴C(1,2),

設(shè)直線CD的解析式為y=kx+b,

,

解得 ,

∴y=﹣x+3,

當(dāng)x=﹣ 時(shí),y= +3= ,

故當(dāng)Q在(﹣ )的位置時(shí),|QE﹣QC|最大,

過點(diǎn)C作CF⊥x軸,垂足為F,

則CD= = =2

方法二:∵y=﹣ ,

∴對稱軸x=﹣ ,

∵點(diǎn)E與點(diǎn)D關(guān)于x=﹣ 對稱,

∴E(﹣6,0),QE=QD,

∴|QE﹣QC|=|QD﹣QC|,

要使|QE﹣QC|最大,延長DC與對稱軸交于點(diǎn)Q,即點(diǎn)Q為直線DC與直線x=﹣ 的交點(diǎn),

∵D(3,0),C(1,2),

∴l(xiāng)DC:y=﹣x+3,

當(dāng)x=﹣ 時(shí),y= ,

∴Q(﹣ , ).

∴CD=


【解析】(1)由已知BC∥AD,DM∥ON得出四邊形ODMN是平行四邊形,OD=BM,根據(jù)B(﹣1,2),D(3,0)就可以求出點(diǎn)M、點(diǎn)D的坐標(biāo),用待定系數(shù)法就可以求出拋物線的解析式。
(2)方法一:連接AC交y軸于G,根據(jù)M是BC的中點(diǎn)求出點(diǎn)C的坐標(biāo),根據(jù)A、B、C三點(diǎn)坐標(biāo)判斷BG是AC的垂直平分線,再求出直線BG的解析式,與二次函數(shù)聯(lián)立,解方程組,即可求出點(diǎn)P的坐標(biāo);方法二:M是BC的中點(diǎn),設(shè)出點(diǎn)P的坐標(biāo),根據(jù)勾股定理表示出PA、PC的長,根據(jù)PA=PC,建立方程,求解即可求出點(diǎn)P的坐標(biāo)。
(3)方法一、由拋物線的對稱性可知QE=QD,當(dāng)Q、C、D三點(diǎn)共線時(shí)|QE﹣QC|最大,再求出直線CD的函數(shù)解析式,再求出點(diǎn)Q的坐標(biāo),過點(diǎn)C作CF⊥x軸,垂足為F,此時(shí)|QE﹣QC|=CD,就可求出CD的長;方法二、找出點(diǎn)E關(guān)于拋物線對稱軸的對稱點(diǎn)D,連接DC與對稱軸的交點(diǎn)即為點(diǎn)Q。
【考點(diǎn)精析】本題主要考查了公式法和確定一次函數(shù)的表達(dá)式的相關(guān)知識點(diǎn),需要掌握要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡比.確定參數(shù)abc,計(jì)算方程判別式.判別式值與零比,有無實(shí)根便得知.有實(shí)根可套公式,沒有實(shí)根要告之;確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩地之間有一座山,汽車原來從A地到B地經(jīng)過C地沿折線A→C→B行駛,現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知AC=10千米,∠B=45°,則隧道開通后,汽車從A地到B地比原來少走千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雙11期間,某個(gè)體戶在淘寶網(wǎng)上購買某品牌A、B兩款羽絨服來銷售,若購買3件A,4件B需支付2400元,若購買2件A,2件B,則需支付1400元.

(1)求A、B兩款羽絨服在網(wǎng)上的售價(jià)分別是多少元?

(2)若個(gè)體戶從淘寶網(wǎng)上購買A、B兩款羽絨服各10件,均按每件600元進(jìn)行零售,銷售一段時(shí)間后,把剩下的羽絨服全部6折銷售完,若總獲利不低于3800元,求個(gè)體戶讓利銷售的羽絨服最多是多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某日在我國某島附近海域有兩艘自西向東航行的海監(jiān)船A、B,船在A船的正東方向,且兩船保持20海里的距離,某一時(shí)刻兩海監(jiān)船同時(shí)測得在A的東北方向,的北偏東15°方向有一我國漁政執(zhí)法船C,求此時(shí)船C與船B的距離是多少.(結(jié)果保留小數(shù)點(diǎn)后一位)
參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)某體育用品專賣店銷售7個(gè)籃球和9個(gè)排球的總利潤為355元,銷售10個(gè)籃球和20個(gè)排球的總利潤為650元.

(1)求每個(gè)籃球和每個(gè)排球的銷售利潤;

(2)已知每個(gè)籃球的進(jìn)價(jià)為200元,每個(gè)排球的進(jìn)價(jià)為160元,若該專賣店計(jì)劃用不超過17400元購進(jìn)籃球和排球共100個(gè),且要求籃球數(shù)量不少于排球數(shù)量的一半,請你為專賣店設(shè)計(jì)符合要求的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛.現(xiàn)在需要調(diào)往A縣10輛,需要調(diào)往B縣8輛,已知從甲倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費(fèi)分別為40元和80元;從乙倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費(fèi)分別為30元和50元.

(1)設(shè)乙倉庫調(diào)往A縣農(nóng)用車x輛,先填好下表,再寫出總運(yùn)費(fèi)y關(guān)于x的函數(shù)關(guān)系式;

(2)若要求總運(yùn)費(fèi)不超過900元,問共有幾種調(diào)運(yùn)方案?

(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高足球基本功,甲、乙、丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練,球從一個(gè)人腳下隨機(jī)傳到另一個(gè)人腳下,且每位傳球人傳球給其余兩人的機(jī)會是均等的,由甲開始傳球,共傳三次.
(1)請用樹狀圖列舉出三次傳球的所有可能情況;
(2)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完全平方公式:(a±b2a2±2ab+b2適當(dāng)?shù)淖冃危梢越鉀Q很多的數(shù)學(xué)問題.

例如:若a+b3,ab1,求a2+b2的值.

解:因?yàn)?/span>a+b3,ab1

所以(a+b29,2ab2

所以a2+b2+2ab9,2ab2

a2+b27

根據(jù)上面的解題思路與方法,解決下列問題:

1)若(7x)(x4)=1,求(7x2+x42的值;

2)如圖,點(diǎn)C是線段AB上的一點(diǎn),以AC、BC為邊向兩邊作正方形,設(shè)AB5,兩正方形的面積和S1+S217,求圖中陰影部分面積.

查看答案和解析>>

同步練習(xí)冊答案