【題目】學校校內(nèi)有一塊如圖所示的三角形空地ABC,計劃將這塊空地建成一個花園,以美化校園環(huán)境,預計花園每平方米造價為60元,學校修建這個花園需要投資多少元?

【答案】5040

【解析】

過點DADBC于點D,設BD=x,則CD=14-x,再根據(jù)勾股定理求出x的值,進而可得出AD的長,由三角形的面積公式即可得出結(jié)論.

過點DADBC于點D,

BD=x,則CD=14-x,

RtABDRtACD中,

AD2=AB2-BD2,AD2=AC2-CD2,

AB2-BD2=AC2-CD2,即132-x2=152-14-x2,解得x=5,

AD2=AB2-BD2=132-52=144

AD=12(米),

∴學校修建這個花園的費用=60××14×12=5040(元).

答:學校修建這個花園需要投資5040元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會發(fā)現(xiàn)這其中還有更多的結(jié)論.

(發(fā)現(xiàn)與證明)在ABCD中,ABBC,將△ABC沿AC翻折至△ABC,連結(jié)BD

1)填空:BE DE(填“<,=,>”);

2)求證:BDAC;

(應用與探究)

(3)在ABCD中,已知:BC=4,∠B=60°,將△ABC沿AC翻折至△ABC,連結(jié)BD.若以A、C、DB′為頂點的四邊形是矩形,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算或化簡:

1

;

3

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有若干個紅、黃、藍、綠四種顏色的小球,小球除顏色外完全相同,為估計該口袋中四種顏色的小球數(shù)量,每次從口袋中隨機摸出一球記下顏色并放回,重復多次試驗,匯總實驗結(jié)果繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

根據(jù)以上信息解答下列問題:
(1)求實驗總次數(shù),并補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中,摸到黃色小球次數(shù)所在扇形的圓心角度數(shù)為多少度?
(3)已知該口袋中有10個紅球,請你根據(jù)實驗結(jié)果估計口袋中綠球的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=4cm,AD=6cm,延長AB到E,使BE=2AB,連接CE,動點F從A出發(fā)以2cm/s的速度沿AE方向向點E運動,動點G從E點出發(fā),以3cm/s的速度沿E→C→D方向向點D運動,兩個動點同時出發(fā),當其中一個動點到達終點時,另一個動點也隨之停止,設動點運動的時間為t秒.

(1)當t為何值時,F(xiàn)C與EG互相平分;
(2)連接FG,當t< 時,是否存在時間t使△EFG與△EBC相似?若存在,求出t的值;若不存在,請說明理由.
(3)設△EFG的面積為y,求出y與t的函數(shù)關系式,求當t為何值時,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三角形ABC(記作△ABC)在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,三個頂點的坐標分別是A(-2,1),B(-3,-2),C1,-2),先將△ABC向上平移3個單位長度,再向右平移2個單位長度,得到A1B1C1

1)在圖中畫出△A1B1C1;

2)點A1,B1C1的坐標分別為   、  、  

3)若y軸有一點P,使△PBC與△ABC面積相等,求出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(m+2)x+m=0,
(1)求證:無論m取何值,原方程總有兩個不相等的實數(shù)根.
(2)若x1 , x2是原方程的兩根,且 + =﹣2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場投入13 800元資金購進甲、乙兩種礦泉水共500箱,礦泉水的成本價和銷售價如表所示:

類別/單價

成本價

銷售價(/)

24

36

33

48

(1)該商場購進甲、乙兩種礦泉水各多少箱?

(2)全部售完500箱礦泉水,該商場共獲得利潤多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點在直線上,

1)直線解析式為

2)畫出該一次函數(shù)的圖象;

3)將直線向上平移個單位長度得到直線,軸的交點的坐標為 ;

4)直線與直線相交于點,點坐標為 ;

5)三角形ABC的面積為

6)由圖象可知不等式的解集為

查看答案和解析>>

同步練習冊答案