【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對(duì)角線(xiàn)翻折,會(huì)發(fā)現(xiàn)這其中還有更多的結(jié)論.
(發(fā)現(xiàn)與證明)在ABCD中,AB≠BC,將△ABC沿AC翻折至△AB′C,連結(jié)B′D.
(1)填空:B′E DE(填“<,=,>”);
(2)求證:B′D∥AC;
(應(yīng)用與探究)
(3)在ABCD中,已知:BC=4,∠B=60°,將△ABC沿AC翻折至△AB′C,連結(jié)B′D.若以A、C、D、B′為頂點(diǎn)的四邊形是矩形,求AC的長(zhǎng).
【答案】(1)=;(2)見(jiàn)解析;(3)2或4.
【解析】
(1)由平行四邊形的性質(zhì)得出∠EAC=∠ACB,由翻折的性質(zhì)得出∠ACB=∠ACB′,證出∠EAC=∠ACB',得出AE=CE;從而DE=B'E
(2)根據(jù)等腰三角形的性質(zhì)得出DE=B'E,證出∠B′DA=(180∠B′ED),由∠AEC=∠B'ED,得出∠ACB'=∠CB'D,即可得出B'D//AC;
(3)分兩種情況:①由矩形的性質(zhì)得出∠CAB'=90°,得出∠BAC=90°,再由30°直角三角形性質(zhì)即可求出AC=2;②由矩形的性質(zhì)和已知條件得出AC=4.
(1)解:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD//BC,
∴∠EAC=∠ACB,
∵△ABC≌△AB'C,
∴∠ACB=∠ACB',BC=B'C,
∴∠EAC=∠ACB',
∴AE=CE,
∴DE=B′E;
故答案為=.
(2)證明:∵DE=B'E
∴∠C B'D=∠B’DA=(180-∠B'ED)
∵∠AEC=∠B'ED
∴∠AC B'=∠C B'D
∴B'D∥AC
(3)解:情況一:如圖1
∵四邊形ACDB’是矩形,
∴∠CAB’=90°,
∴∠BAC=90°
∵∠B=60°
∴AC=BC=2
情況二:如圖2
∵四邊形ACB’D是矩形,
∴∠ACB’=90°
∴∠ACB=90°
∵BC=4,∠B=60°
∴AC=4,
綜上所述:ACAC的長(zhǎng)為2或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;
(2)若方程的兩根恰好是一個(gè)矩形的兩邊長(zhǎng),且k=4,求該矩形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P是△ABC內(nèi)的一點(diǎn),PA=3,PB=1,CD=PC=2,CD⊥PC.
(1)找出圖中一對(duì)全等三角形,并證明;
(2)求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是線(xiàn)段AB上一點(diǎn),AB=12cm,C、D兩點(diǎn)分別從P、B出發(fā)以1cm/s、2cm/s的速度沿直線(xiàn)AB向左運(yùn)動(dòng)(C在線(xiàn)段AP上,D在線(xiàn)段BP上),運(yùn)動(dòng)的時(shí)間為t.
(1)當(dāng)t=1時(shí),PD=2AC,請(qǐng)求出AP的長(zhǎng);
(2)當(dāng)t=2時(shí),PD=2AC,請(qǐng)求出AP的長(zhǎng);
(3)若C、D運(yùn)動(dòng)到任一時(shí)刻時(shí),總有PD=2AC,請(qǐng)求出AP的長(zhǎng);
(4)在(3)的條件下,Q是直線(xiàn)AB上一點(diǎn),且AQ﹣BQ=PQ,求PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校數(shù)學(xué)興趣小組成員小華對(duì)本班上學(xué)期期末考試數(shù)學(xué)成績(jī)(成績(jī)?nèi)≌麛?shù),滿(mǎn)分為100分)作了統(tǒng)計(jì)分析,繪制成如下頻數(shù)分布直方圖和頻數(shù)、頻率分布表.請(qǐng)你根據(jù)圖表提供的信息,解答下列問(wèn)題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計(jì) |
頻數(shù) | 2 | 20 | 16 | 4 | 50 | |
頻率 | 0.04 | 0.16 | 0.40 | 0.32 | 1 |
(1)頻數(shù)、頻率分布表中 , ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)數(shù)學(xué)老師準(zhǔn)備從不低于90分的學(xué)生中選1人介紹學(xué)習(xí)經(jīng)驗(yàn),那么取得了93分的小華被選上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),把△EBF沿EF折疊,點(diǎn)B落在B′處.若△CDB′恰為等腰三角形,則DB′的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列解題過(guò)程,然后解答后面兩個(gè)問(wèn)題.
解方程:|x+3|=2.
解:當(dāng)x+3≥0時(shí),原方程可化為x+3=2,解得x=-1;
當(dāng)x+3<0時(shí),原方程可化為x+3=-2,解得x=-5.
所以原方程的解是x=-1或x=-5.
(1)解方程:|3x-2|-4=0.
(2)已知關(guān)于x的方程|x-2|=b+1.
①若方程無(wú)解,則b的取值范圍是 .
②若方程只有一個(gè)解,則b的值為 .
③若方程有兩個(gè)解,則b的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校校內(nèi)有一塊如圖所示的三角形空地ABC,計(jì)劃將這塊空地建成一個(gè)花園,以美化校園環(huán)境,預(yù)計(jì)花園每平方米造價(jià)為60元,學(xué)校修建這個(gè)花園需要投資多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com