【題目】2019年足球亞洲杯正在阿聯(lián)酋進(jìn)行,這項(xiàng)起源于我國(guó)“蹴鞠”的運(yùn)動(dòng)項(xiàng)目近年來(lái)在我國(guó)中小學(xué)校園得到大力推廣,某次校園足球比賽規(guī)定:勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)得0分,某足球隊(duì)共進(jìn)行了8場(chǎng)比賽,得了12分,該隊(duì)獲勝的場(chǎng)數(shù)有幾種可能( )
A. 3B. 4C. 5D. 6
【答案】A
【解析】
設(shè)該隊(duì)獲勝x場(chǎng),平y場(chǎng),則負(fù)(8-x-y)場(chǎng),根據(jù)比賽得分=3×獲勝場(chǎng)數(shù)+1×踢平場(chǎng)數(shù),即可得出關(guān)于x,y的二元一次方程,結(jié)合x,y均為非負(fù)整數(shù)及x+y≤8,即可求出結(jié)論.
解:設(shè)該隊(duì)獲勝x場(chǎng),平y場(chǎng),則負(fù)(8﹣x﹣y)場(chǎng),
依題意,得:3x+y=12,
∴y=12﹣3x,
∴ .
又∵x+y≤8,
∴該隊(duì)可能獲勝2場(chǎng)、3場(chǎng)或4場(chǎng).
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+的圖象經(jīng)過(guò)點(diǎn)A(2,6)和B(4,4),直線l經(jīng)過(guò)點(diǎn)B并與x軸垂直,垂足為Q.
(1)求二次函數(shù)的表達(dá)式;
(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點(diǎn)R是直線1上的點(diǎn),如果△AOK與以O,Q,R為頂點(diǎn)的三角形相似,請(qǐng)直接寫出點(diǎn)R的縱坐標(biāo);
(3)如圖2,正方形CDEF的頂點(diǎn)C是第二象限拋物線上的點(diǎn),點(diǎn)D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,FM的交點(diǎn)分別是G,H,并且CG=GM,FH=HM,連接CE,與FM的交點(diǎn)為N,且點(diǎn)N的縱坐標(biāo)是﹣1.
求:①tan∠DCG的值;
②點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司每月生產(chǎn)產(chǎn)品A4萬(wàn)件和同類新型產(chǎn)品B若干萬(wàn)件.產(chǎn)品A每件銷售利潤(rùn)為200元,且在產(chǎn)品B銷售量每月不超過(guò)3萬(wàn)件時(shí),每月4萬(wàn)件產(chǎn)品A能全部銷售,產(chǎn)品B的每月銷售量y(萬(wàn)件)與每件銷售利潤(rùn)x(元)之間的函數(shù)關(guān)系圖象如圖所示.
(1)求y與x的函數(shù)關(guān)系式;
(2)在保證A產(chǎn)品全部銷售的情況下,產(chǎn)品B每件利潤(rùn)定為多少元時(shí)公司銷售產(chǎn)品A和產(chǎn)品B每月可獲得總利潤(rùn)w1(萬(wàn)元)最大?
(3)在不要求產(chǎn)品A全部銷售的情況下,已知受產(chǎn)品B銷售價(jià)的影響產(chǎn)品A每月銷售量:(萬(wàn)件)與x(元)之間滿足關(guān)系z=0.024x﹣3.2,那么產(chǎn)品B每件利潤(rùn)定為多少元時(shí),公司每月可獲得最大的利潤(rùn)?并求最大總利潤(rùn)w2(萬(wàn)元).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是等腰三角形,O是底邊BC中點(diǎn),腰AB與⊙O相切于點(diǎn)D
(1)求證:AC是⊙O的切線;
(2)如圖2,連接CD,若tan∠BCD=,⊙O的半徑為,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線與反比例函數(shù)(>0)的圖象分別交于點(diǎn) A(,4)和點(diǎn)B(8,),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.
(1)求直線AB的解析式;
(2)觀察圖象,當(dāng)時(shí),直接寫出的解集;
(3)若點(diǎn)P是軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·湖州)(本小題10分)
我市水產(chǎn)養(yǎng)殖專業(yè)戶王大爺承包了30畝水塘,分別養(yǎng)殖甲魚和桂魚,有關(guān)成本、銷售情況如下表:
⑴2010年,王大爺養(yǎng)殖甲魚20畝,桂魚10畝,求王大爺這一年共收益多少萬(wàn)元?(收益=銷售額-成本)
⑵2011年,王大爺繼續(xù)用這30畝水塘全部養(yǎng)殖甲魚和桂魚,計(jì)劃投入成本不超過(guò)70萬(wàn)元。若每畝養(yǎng)殖的成本、銷售額與2010年相同,要獲得最大收益,他應(yīng)養(yǎng)殖甲魚和桂魚各多少畝?
⑶已知甲魚每畝需要飼料500㎏,桂魚每畝需要飼料700㎏,根據(jù)⑵中的養(yǎng)殖畝數(shù),為了節(jié)約運(yùn)輸成本,實(shí)際使用的運(yùn)輸車輛每次裝載飼料的總量是原計(jì)劃每次裝載總量的2倍,結(jié)果運(yùn)輸養(yǎng)殖所需要全部飼料比原計(jì)劃減少了2次,求王大爺原定的運(yùn)輸車輛每次可裝載飼料多少㎏?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初二年級(jí)數(shù)學(xué)考試,(滿分為100分,該班學(xué)生成績(jī)均不低于50分)作了統(tǒng)計(jì)分析,繪制成如圖頻數(shù)分布直方圖和頻數(shù)、頻率分布表,請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計(jì) |
頻數(shù) | 2 | a | 20 | 16 | 4 | 50 |
頻率 | 0.04 | 0.16 | 0.40 | 0.32 | b | 1 |
(1)頻數(shù)、頻率分布表中a= ,b= ;(答案直接填在題中橫線上)
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校八年級(jí)共有600名學(xué)生,且各個(gè)班級(jí)學(xué)生成績(jī)分布基本相同,請(qǐng)估計(jì)該校八年級(jí)上學(xué)期期末考試成績(jī)低于70分的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、E在⊙O上,∠B=2∠ACE,在BA的延長(zhǎng)線上有一點(diǎn)P,使得∠P=∠BAC,弦CE交AB于點(diǎn)F,連接AE.
(1)求證:PE是⊙O的切線;
(2)若AF=2,AE=EF=,求OA的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩班分別選5名同學(xué)組成代表隊(duì)參加學(xué)校組織的“國(guó)防知識(shí)”選拔賽,現(xiàn)根據(jù)成績(jī)(滿分10分)制作如圖統(tǒng)計(jì)圖和統(tǒng)計(jì)表(尚未完成)
甲、乙兩班代表隊(duì)成績(jī)統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | 8.5 | a | 0.7 |
乙班 | 8.5 | b | 10 | 1.6 |
請(qǐng)根據(jù)有關(guān)信息解決下列問題:
(1)填空:a= ,b= ;
(2)學(xué)校預(yù)估如果平均分能達(dá)8.5分,在參加市團(tuán)體比賽中即可以獲獎(jiǎng),現(xiàn)應(yīng)選派 代表隊(duì)參加市比賽;(填“甲”或“乙”)
(3)現(xiàn)將從成績(jī)滿分的3個(gè)學(xué)生中隨機(jī)抽取2人參加市國(guó)防知識(shí)個(gè)人競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到甲,乙班各一個(gè)學(xué)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com