【題目】問題情境:如圖,在Rt△ABC中,∠ACB=90°∠BAC=30°.
動(dòng)手操作:(1)若以直角邊AC所在的直線為對(duì)稱軸.將Rt△ABC作軸對(duì)稱變換,請(qǐng)你在原圖上作出它的對(duì)稱圖形:
觀察發(fā)現(xiàn):(2)Rt△ABC和它的對(duì)稱圖形組成了什么圖形?你最準(zhǔn)確的判斷是 .
合作交流:(3)根據(jù)上面的圖形,請(qǐng)你猜想直角邊BC與斜邊AB的數(shù)量關(guān)系,并證明你的猜想.
【答案】(1)見解析 (2)等邊三角形 (3)AB=2BC
【解析】
(1)作出點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)D,連接AD,即可得出答案;
(2)根據(jù)圖形成軸對(duì)稱可知,Rt△ABC和它的像組成了等邊三角形;
(3)利用“SAS”證明Rt△ABC≌Rt△ADC,得出AB=DB,∠BAD=60°,得到等邊三角形△ABD,從而得出答案.
(1)作圖如右圖:
.
(2)等邊三角形
(3)AB=2BC.
∵∠C=90°,∠A=30°,
∴∠B=60°.
∵△ABC≌△ADC,
∴∠DAC=∠BAC=30°.
∴∠BAD=60°.
∴△ABD是等邊三角形.
∴AB=DB.
∵CD=BC,
∴BC=BD.
∴BC=BA.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱這
個(gè)分式為“和諧分式”.
(1)下列分式:①;②;③;④. 其中是“和諧分式”是 (填寫序號(hào)即可);
(2)若為正整數(shù),且為“和諧分式”,請(qǐng)寫出的值;
(3)在化簡(jiǎn)時(shí),
小東和小強(qiáng)分別進(jìn)行了如下三步變形:
小東:
小強(qiáng):
顯然,小強(qiáng)利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡(jiǎn)單,
原因是: ,
請(qǐng)你接著小強(qiáng)的方法完成化簡(jiǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩組同學(xué)進(jìn)行一分鐘引體向上測(cè)試,評(píng)分標(biāo)準(zhǔn)規(guī)定,做6個(gè)以上含6個(gè)為合格,做9個(gè)以上含9個(gè)為優(yōu)秀,兩組同學(xué)的測(cè)試成績(jī)?nèi)缦卤恚?/span>
成績(jī)個(gè) | 4 | 5 | 6 | 7 | 8 | 9 |
甲組人 | 1 | 2 | 5 | 2 | 1 | 4 |
乙組人 | 1 | 1 | 4 | 5 | 2 | 2 |
現(xiàn)將兩組同學(xué)的測(cè)試成績(jī)繪制成如下不完整的統(tǒng)計(jì)圖表:
統(tǒng)計(jì)量 | 平均數(shù)個(gè) | 中位數(shù) | 眾數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | a | 6 | 6 | |||
乙組 | b | 7 |
將條形統(tǒng)計(jì)圖補(bǔ)充完整;
統(tǒng)計(jì)表中的______,______;
人說甲組的優(yōu)秀率高于乙組優(yōu)秀率,所以甲組成績(jī)比乙組成績(jī)好,但也有人說乙組成績(jī)比甲組成績(jī)好,請(qǐng)你給出兩條支持乙組成績(jī)好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng) = 時(shí),求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對(duì)角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.
(1)求證:BF=DF;
(2)如圖2,過點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連結(jié)FG交BD于點(diǎn)O.
①求證:四邊形BFDG是菱形;
②若AB=3,AD=4,求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于點(diǎn)D,DG∥AB,DG交BC于點(diǎn)G,點(diǎn)E在BC的延長(zhǎng)線上,且CE=CD.
(1)求∠ABD和∠BDE的度數(shù);
(2)寫出圖中的等腰三角形(寫出3個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng) = 時(shí),求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,tanB= ,cosC= ,AC= .求:
(1)BC的長(zhǎng);
(2)sin∠ADC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com