【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這

個分式為和諧分式”.

1)下列分式:;. 其中是和諧分式 (填寫序號即可);

2)若為正整數(shù),且和諧分式,請寫出的值;

3)在化簡時,

小東和小強分別進行了如下三步變形:

小東:

小強:

顯然,小強利用了其中的和諧分式, 第三步所得結果比小東的結果簡單,

原因是: ,

請你接著小強的方法完成化簡.

【答案】(1)②;(2) 4,5;(3)見解析.

【解析】試題分析: 根據(jù)和諧分式的定義進行判斷即可.

可以根據(jù)題意對分母分解因式,從而可以求得相應的的值,本題得以解決.

小強使用和諧分式的方法找到了最簡公分母.繼續(xù)化簡即可.

試題解析:1.

245.

3)小強通分時,利用和諧分式找到了最簡公分母.

原式

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會準備調(diào)查全校七年級學生 每天(除課間操外)的課外鍛煉時間。

1)確定調(diào)查方式時,甲說:我到(1)班去調(diào)查全體同學;乙同學說:我到體育場上去詢問參加鍛煉的同學;丙同學說:我到全校七年級每個班去隨機調(diào)查一定數(shù)量的同學。你認為調(diào)查方式最合理的是(、或”)_________

(2)他們采用了最為合適的調(diào)查方法收集數(shù)據(jù),并繪制出如圖1所示的條形統(tǒng)計圖和如圖2所示的扇形統(tǒng)計圖,請將兩幅統(tǒng)計圖補充完整;

(3)若該七年級共有1200名同學,請你估計其中每天(除課間操外)課外鍛煉時間不大于20分鐘的人數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】|a|=4,b2=4,且|a+b|=a+b, 那么a-b的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料

通過小學的學習我們知道,分數(shù)可分為真分數(shù)假分數(shù).而假分數(shù)都可化為帶分數(shù),如:

我們定義:在分式中,對于只含有一個字母的分式,當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為假分式;當分子的次數(shù)小于分母的次數(shù)時,我們稱之為真分式

如: 這樣的分式就是假分式;再如: 這樣的分式就是真分式.

類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).

如: ; ;

再如:

解決下列問題:

1)分式 分式(填真分式假分式);

2)假分式可化為帶分式 的形式;

3)如果分式的值為整數(shù),那么x的整數(shù)值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,點P是直線AD上一點,若滿足PBC是等腰三角形的點P有且只有3個,則AD的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】370000用科學記數(shù)法表示為

A.37×104B.3.7×105C.0.37×106D.以上答案都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中, , 三邊的長分別為, ,求這個三角形的面積.

小明同學在解答這道題時,先建立了一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中

畫出格點ABC中,(即ABC三個頂點都在小正方形的頂點處),如圖1所示,這樣不需要ABC高,借用網(wǎng)格就能計算出它的面積.

1ABC的面積為 ;

2)如果MNP三邊的長分別為, , ,請利用圖2的正方形網(wǎng)格(每個小正方形的邊長為1)畫出相應的格點MNP,并直接寫出MNP的面積為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:

①兩點之間的所有連線中,線段最短;②過一點有且只有一條直線與已知直線垂直;③連接直線外一點與直線上各點的所有線段中,垂線段最短;④直線外一點到這條直線的垂線段叫做點到直線的距離.

其中正確的個數(shù)有(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明用尺規(guī)作圖作△ABCAC上的高BH,作法如下:

分別以點D,E為圓心,大于DE的長為半徑作弧,兩弧交于F

作射線BF,交邊AC于點H

B為圓心,BK長為半徑作弧,交直線AC于點DE;

取一點K,使KBAC的兩側;

所以,BH就是所求作的高. 其中順序正確的作圖步驟是( 。

A. ①②③④ B. ④③②① C. ②④③① D. ④③①②

查看答案和解析>>

同步練習冊答案