【題目】如圖,∠BAC的平分線與BC的垂直平分線相交于點(diǎn)D,DEAB,DFAC,垂足分別為E、F,AB6AC3,則BE長(zhǎng)度為(

A.1B.1.5C.2D.2.5

【答案】B

【解析】

首先連接CD,BD,由∠BAC的平分線與BC的垂直平分線相交于點(diǎn)D,DEAB,DFAC,根據(jù)角平分線的性質(zhì)與線段垂直平分線的性質(zhì),易得CDBD,DFDE,繼而可得AFAE,易證得RtCDFRtBDE,則可得BECF,繼而求得答案.

連接CDBD,

AD是∠BAC的平分線,DEAB,DFAC,

DFDE,∠F=∠DEB90°,∠ADF=∠ADE,

AEAF,

DGBC的垂直平分線,

CDBD,

RtCDFRtBDE中,

RtCDFRtBDEHL),

BECF,

ABAEBEAFBEACCFBEAC2BE,

AB6,AC3

BE1.5

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,對(duì)于一個(gè)圖形,通過2種不同的方法計(jì)算它的面積時(shí),可以得到一個(gè)數(shù)學(xué)等式.例如圖①可以得到,請(qǐng)解答下列問題:

1)寫出圖②中所表示的等式:

2)利用(1)中所得到的結(jié)論,解決下面的問題:已知,,求的值;

3)小明同學(xué)用2張邊長(zhǎng)為的正方形紙片、3張邊長(zhǎng)為的正方形紙片,5張邊長(zhǎng)分別為的長(zhǎng)方形紙片拼出了一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形較長(zhǎng)一邊的長(zhǎng)為多少?

4)小明同學(xué)又用張邊長(zhǎng)為的正方形紙片,張邊長(zhǎng)為的正方形紙片、張邊長(zhǎng)分別為的長(zhǎng)方形紙片拼出了一個(gè)面積為的長(zhǎng)方形,請(qǐng)問一共用掉多少?gòu)埣埰?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

1)求BC邊的長(zhǎng);

2)當(dāng)△ABP為直角三角形時(shí),求t的值;

3)當(dāng)△ABP為等腰三角形時(shí),求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB在反比例函數(shù)y=的圖象上,且點(diǎn)A,B的橫坐標(biāo)分別為a,2aa0),若SAOB=3,則k的值為( 。

A.5B.-5C.4D.-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸交于點(diǎn),與y軸交于點(diǎn)B,拋物線經(jīng)過點(diǎn)

k的值和拋物線的解析式;

x軸上一動(dòng)點(diǎn),過點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)

若以O,B,N,P為頂點(diǎn)的四邊形OBNP是平行四邊形時(shí),m的值.

當(dāng) 時(shí),m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當(dāng)B=140°時(shí),求BAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和四邊形CEFG都是正方形,且BC=CDCE=CG,∠BCD=GCE=90°

1)求證:BCG≌△DCE

2)求證:BGDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一.為了倡導(dǎo)節(jié)約用水從我做起,小剛在他所在班的50名同學(xué)中,隨機(jī)調(diào)查了10名同學(xué)家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計(jì)圖

1】求這10個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

2】根據(jù)樣本數(shù)據(jù),估計(jì)小剛所在班50名同學(xué)家庭中月均用水量不超過7 t的約有多少戶.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB⊙O的切線,切點(diǎn)為B,AO⊙O于點(diǎn)C,過點(diǎn)CDC⊥OA,交AB于點(diǎn)D.

(1)求證:∠CDO∠BDO;

(2)∠A30°,⊙O的半徑為4,求陰影部分的面積(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案