【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動點P從點B出發(fā)沿射線BC1cm/s的速度移動,設(shè)運動的時間為t秒.

1)求BC邊的長;

2)當(dāng)△ABP為直角三角形時,求t的值;

3)當(dāng)△ABP為等腰三角形時,求t的值

【答案】

【解析】試題分析:(1)直接根據(jù)勾股定理求出BC的長度;

2)當(dāng)△ABP為直角三角形時,分兩種情況:當(dāng)∠APB為直角時,當(dāng)∠BAP為直角時,分別求出此時的t值即可;

3)當(dāng)△ABP為等腰三角形時,分三種情況:當(dāng)AB=BP時;當(dāng)AB=AP時;當(dāng)BP=AP時,分別求出BP的長度,繼而可求得t值.

試題解析:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,

∴BC=4cm);

2)由題意知BP=tcm,

當(dāng)∠APB為直角時,點P與點C重合,BP=BC=4cm,即t=4

當(dāng)∠BAP為直角時,BP=tcmCP=t-4cm,AC=3cm

Rt△ACP中,

AP2=32+t-42

Rt△BAP中,AB2+AP2=BP2

即:52+[32+t-42]=t2,

解得:t=,

故當(dāng)ABP為直角三角形時,t=4t=;

3當(dāng)AB=BP時,t=5;

當(dāng)AB=AP時,BP=2BC=8cmt=8;

當(dāng)BP=AP時,AP=BP=tcm,CP=|t-4|cm,AC=3cm,

Rt△ACP中,AP2=AC2+CP2,

所以t2=32+t-42,

解得:t=,

綜上所述:當(dāng)ABP為等腰三角形時,t=5t=8t=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國某海域內(nèi)的一個小島,其平面圖如圖甲所示,小明據(jù)此構(gòu)造出該島的一個數(shù)學(xué)模型如圖乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,請據(jù)此解答如下問題:

(1)求該島的周長和面積;(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732,≈2.449)

(2)求∠ACD的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點B為第一象限內(nèi)一點,點Ax軸正半軸上一點,分別連接OB,AB,AOB為等邊三角形,點B的橫坐標(biāo)為4

1)如圖1,求線段OA的長;

2)如圖2,點M在線段OA上(點M不與點O、點A重合),點N在線段BA的延長線上,連接MB,MN,BMMN,設(shè)OM的長為t,BN的長為d,求dt的關(guān)系式(不要求寫出t的取值范圍);

3)在(2)的條件下,點D為第四象限內(nèi)一點,分別連接OD,MDND,MND為等邊三角形,線段MA的垂直平分線交OD的延長線于點E,交MA于點H,連接AE,交ND于點F,連接MF,若MFAM+AN,求點E的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷售,每年產(chǎn)銷 x 件,已知產(chǎn)銷兩種產(chǎn)品的有關(guān)信息 如下:

產(chǎn)品

每件售價/萬元

每件成本/萬元

年最大產(chǎn)銷量/件

6

3

200

20

10

80

甲、乙兩產(chǎn)品每年的其他費用與產(chǎn)銷量的關(guān)系分別是: y1 kx b y2 ax2 m ,它們的函數(shù)圖象分別如圖(1)和圖(2)所示.

(1)求: y1 、 y2 的函數(shù)解析式;

(2)分別求出產(chǎn)銷兩種產(chǎn)品的最大利潤;(利潤=銷售額-成本-其它費用)

(3)若通過技術(shù)改進(jìn),甲產(chǎn)品的每件成本降到 a 萬元,乙產(chǎn)品的年最大產(chǎn)銷量可以達(dá)到 110 件,其它都不變,為獲得最大利潤,該公式應(yīng)該選擇產(chǎn)銷哪種產(chǎn)品?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點C落在DP(PAB中點)所在的直線上,得到經(jīng)過點D的折痕DE,則∠DEC的大小為( )

A. 78° B. 45° C. 60° D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用小立方體搭一個幾何體,使它的主視圖和俯視圖如圖所示,俯視圖中小正方形中字母表示在該位置小立方體的個數(shù),請解答下列問題:

(1)a= ,b= ,c= ;

(2)這個幾何體最少由 個小立方體搭成,最多由 個小立方體搭成;

(3)當(dāng)d=2,e=1,f=2時,畫出這個幾何體的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,動點MA點出發(fā),以的速度沿線段AB向點B運動,動點NB點出發(fā),以的速度沿線段BC向點C運動;點M與點N同時出發(fā),且當(dāng)M點運動到B點時,M,N兩點同時停止運動設(shè)點M的運動時間為,連接MN,將沿MN折疊,使點B落在點處,得到,若,則t的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠B=90°,AB=16cm,BC=12cmP、QABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長.

2)當(dāng)點Q在邊BC上運動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

3)當(dāng)點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,經(jīng)過原點O的拋物線(a0)與x軸交于另一點A(,0),在第一象限內(nèi)與直線y=x交于點B(2,t).

(1)求這條拋物線的表達(dá)式;

(2)在第四象限內(nèi)的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標(biāo);

(3)如圖2,若點M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點P,使得POC∽△MOB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案