【題目】已知在圖一中,將等邊BC邊中點D順時針旋轉(zhuǎn),直線AG與直線CF交于點求證.小明同學(xué)的思路是這樣的:通過證明得到,從而得到,繼續(xù)推理就可以使問題得到解決.

請根據(jù)小明的思路,求證:;

愛動腦筋的小明把問題做了進一步思考,他想:如果把題目的“等邊”改成“等腰直角,其中”,如圖二,中的結(jié)論還成立嗎?如果成立,求此時線段BM的最大值.

小明繼續(xù)大膽設(shè)問:如圖三,在中,,,將這樣的按照題目中的方式旋轉(zhuǎn),請直接寫出AGCF的位置關(guān)系以及線段BM的變化范圍.

【答案】(1)見解析;(2)成立,最大值為;(3),

【解析】

想辦法證明,推出,由,推出,推出,可得;

結(jié)論成立:證明方法類似利用四邊形三邊關(guān)系求出BM的最大值;

結(jié)論:理由三角形的三邊關(guān)系求出BM的取值范圍即可.

證明:如圖一中,

是等邊三角形,,

,

,

,

,

,

解:如圖二中,結(jié)論成立:

理由:是等腰直角三角形,,

,

,

,

,

,

,

,

AC的中點O,連接BO,OM,BM

,,

,

當(dāng)B、O、M共線時,BM的值最大,最大值為

解:如圖三中,結(jié)論:

理由::是等腰三角形,,

,

,

,

,

,

,

AC的中點O,連接BO,OM,BM

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學(xué)校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,該校有幾種購買方案?

3)上面的哪種方案費用最低?按費用最低方案購買需要多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:BD的直徑,O為圓心,點A為圓上一點,過點B的切線交DA的延長線于點F,點C上一點,且,連接BCAD于點E,連接AC

如圖1,求證:;

如圖2,點H內(nèi)部一點,連接OH,CH時,求證:;

的條件下,若,的半徑為10,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中.BC5cmBP、CP分別是∠ABC和∠ACB的平分線,且PDAB,PEAC,則△PDE的周長是______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5兩次共花費940兩次購進的AB兩種花草價格均分別相同

B兩種花草每棵的價格分別是多少元?

若再次購買AB兩種花草共12、B兩種花草價格不變,且A種花草的數(shù)量不少于B種花草的數(shù)量的4倍,請你給出一種費用最省的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)夫?qū)⑻O果樹種在正方形的果園內(nèi),為了保護蘋果樹不受風(fēng)吹,他在蘋果樹的周圍種上針葉樹.在下圖里,你可以看到農(nóng)夫所種植蘋果樹的列數(shù)(n)和蘋果樹數(shù)量及針葉樹數(shù)量的規(guī)律:當(dāng)n為某一個數(shù)值時,蘋果樹數(shù)量會等于針葉樹數(shù)量,則n(  )

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀對學(xué)生的成長有著深遠(yuǎn)的影響,某中學(xué)為了解學(xué)生每周課余閱讀的時間,在本校隨機抽取了若干名學(xué)生進行調(diào)查,并依據(jù)調(diào)查結(jié)果繪制了以下不完整的統(tǒng)計圖表.

組別

時間小時

頻數(shù)人數(shù)

頻率

A

6

B

a

C

10

D

8

b

E

4

合計

1

請根據(jù)圖表中的信息,解答下列問題:

表中的______,______,中位數(shù)落在______組,將頻數(shù)分布直方圖補全;

估計該校2000名學(xué)生中,每周課余閱讀時間不足小時的學(xué)生大約有多少名?

組的4人中,有1名男生和3名女生,該校計劃在E組學(xué)生中隨機選出兩人向全校同學(xué)作讀書心得報告,請用畫樹狀圖或列表法求抽取的兩名學(xué)生剛好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,,對角線AC平分

如圖1,若,,探究AD、AB與對角線AC三者之間的數(shù)量關(guān)系,寫出結(jié)論,不必證明.

如圖2若將中的條件“”去掉,中的結(jié)論是否還成立?并證明你的結(jié)論;

如圖3,若,試探究ADAB與對角線AC三者之間的數(shù)量關(guān)系,寫出結(jié)論,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動點P從點B出發(fā),以每秒1個單位的速度,沿BA向點A移動;同時點Q從點C出發(fā),以每秒2個單位的速度,沿CB向點B移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤2),解答下列問題:

(1)當(dāng)x為何值時,PQ⊥DQ;

(2)設(shè)QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時,S有最小值?并求出最小值.

查看答案和解析>>

同步練習(xí)冊答案