【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC.MN是過點A的直線,BD⊥MN 于D,CE⊥MN于E.
(1)求證:BD=AE.
(2)若將MN繞點A旋轉,使MN與BC相交于點G(如圖2),其他條件不變,求證:BD=AE.
(3)在(2)的情況下,若CE的延長線過AB的中點F(如圖3),連接GF,求證:∠AFE=∠BFG.
【答案】(1)證明見詳解;(2)證明見詳解;(3)證明見詳解.
【解析】
(1)首先證明∠1=∠3,再證明△ADB≌△CEA,然后根據(jù)全等三角形的性質可得BD=AE;
(2)首先證明∠BAD=∠ACE,再證明△ABD≌△CAE,根據(jù)全等三角形對應邊相等可得BD=AE;
(3)首先證明△ACF≌△BAP,然后再證明△BFG≌△BPG,再根據(jù)全等三角形對應角相等可得∠BPG=∠BFG,再根據(jù)等量代換可得結論∠BFG=∠AFE.
證明:(1)如圖,
∵BD⊥MN,CE⊥MN,
∴∠BDA=∠AEC=90°,
∵∠BAC=90°,
∴∠1+∠2=90°,
又∵∠3+∠2=90°,
∴∠1=∠3,
在△ADB和△CEA中,,
∴△ADB≌△CEA(AAS),
∴BD=AE;
(2)如圖,
∵BD⊥MN,CE⊥MN,
∴∠BDA=∠CEA=90°,
∵∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,
∴∠BAD=∠ACE,
在△ABD和△CAE中,
∴△ABD≌△CAE(AAS),
∴BD=AE;
(3)過B作BP∥AC交MN于P,
∵BP∥AC,
∴∠PBA+∠BAC=180°,
∵∠BAC=90°,
∴∠PBA=∠BAC=90°,
由(2)得:∠BAP=∠ACF,
∴在△ACF和△BAP中,
∴△ACF≌△BAP(ASA),
∴∠AFC=∠BPA,AF=BP
∵BF=AF,
∴BF=BP,
∵△ABC是等腰直角三角形,
∴∠ABC=45°,
又∵∠PBA=90°,
∴∠PBG=45°,
∴∠ABC=∠PBG,
在△BFG和△BPG中,
∴△BFG≌△BPG(SAS),
∴∠BPG=∠BFG,
∵∠BPG=∠AFE,
∴∠BFG=∠AFE.
科目:初中數(shù)學 來源: 題型:
【題目】行駛中的汽車,在剎車后由于慣性的作用,還要向前方滑行一段距離才能停止,這段距離稱為“剎車距離”,為了測定某種型號的汽車的剎車性能(車速不超過140 km/h),對這種汽車進行測試,測得數(shù)據(jù)如下表:
剎車時車速/km·h-1 | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
剎車距離/m | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
(1)以車速為x軸,以剎車距離為y軸,建立平面直角坐標系,根據(jù)上表對應值作出函數(shù)的大致圖象;
(2)觀察圖象.估計函數(shù)的類型,并確定一個滿足這些數(shù)據(jù)的函數(shù)解析式;
(3)該型號汽車在國道發(fā)生了一次交通事故,現(xiàn)場測得剎車距離為46.5 m,推測剎車時的車速是多少?請問事故發(fā)生時,汽車是超速行駛還是正常行駛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:Rt△ABE≌Rt△CBF
(2)若∠AEC=105°,求∠BCF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知∠ABC和∠ACB的平分線相交于點O,∠BAC=80°,則∠BOC的度數(shù)是( )
A.130°B.120°C.100°D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在大課間活動中,同學們積極參加體育鍛煉,小明就本班同學“我最喜愛的體育項目”進行了一次調查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:
(1)該班共有_____名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應的圓心角度數(shù)為_____;
(4)學校將舉辦體育節(jié),該班將推選5位同學參加乒乓球活動,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點,AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請判斷△ADE是什么三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC和△BDE是等腰直角三角形,∠ABC=∠DBE=90°,點D在AC上.
(1)求證:△ABD≌△CBE;
(2)若DB=1,求AD2+CD2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”,如圖所示,它是由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1,S2,S3,若正方形EFGH的邊長為4,則S1+S2+S3的值為___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“五一”期間,小明到小陳家所在的美麗鄉(xiāng)村游玩,在村頭A處小明接到小陳發(fā)來的定位,發(fā)現(xiàn)小陳家C在自己的北偏東45°方向,于是沿河邊筆直的綠道l步行200米到達B處,這時定位顯示小陳家C在自己的北偏東30°方向,如圖所示,根據(jù)以上信息和下面的對話,請你幫小明算一算他還需沿綠道繼續(xù)直走多少米才能到達橋頭D處(精確到1米)(備用數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com