【題目】ABC,AB=CB,ABC=90°,FAB延長線上一點,EBC,AE=CF.

(1)求證:RtABERtCBF

(2)若∠AEC=105°,求∠BCF的度數(shù).

【答案】(1)見解析;(2)BCF=15°.

【解析】

1)根據(jù)“HL”進行證明即可;

2)利用三角形外角的性質求出∠BAE的度數(shù),然后利用全等三角形的對應角相等即可得出答案.

1)證明:∵∠ABC=90°,

∴∠ABC=CBF=90°,

RtABERtCBF中,

RtABERtCBFHL);

2)解:∠BAE=AEC-ABC=105°-90°=15°,

RtABERtCBF

∴∠BCF=BAE=15°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:

如圖在等邊三角形ABC中,線段AMBC邊上的中線,動點D在直線AM上時,以CD為一邊在CD的下方作等邊三角形CDE,連接BE

1)填空:∠CAM   ;

2)若點D在線段AM上時,求證:△ADC≌△BEC

3)當動點D在直線AM上時,設直線BE與直線AM的交點為O,

當點D在線段AM上時,求∠AOB的度數(shù);

當動點D在直線AM上時,試判斷∠AOB是否為定值?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數(shù)的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數(shù)解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】夏季空調銷售供不應求,某空調廠接到一份緊急訂單,要求在10天內(含10天)完成任務,為提高生產效率,工廠加班加點,接到任務的第一天就生產了空調42臺,以后每天生產的空調都比前一天多2臺,由于機器損耗等原因,當日生產的空調數(shù)量達到50臺后,每多生產一臺,當天生產的所有空調,平均每臺成本就增加20元.

(1)設第天生產空調臺,直接寫出之間的函數(shù)解析式,并寫出自變量的取值范圍.

(2)若每臺空調的成本價(日生產量不超過50臺時)為2000元,訂購價格為每臺2920元,設第天的利潤為元,試求之間的函數(shù)解析式,并求工廠哪一天獲得的利潤最大,最大利潤是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CAB的垂直平分線EF上一點,連接CA,CB.以BC為直角邊作RtBCD,且CBCD,ADEF于點H,BHDC于點M

1)求證:∠HAC=∠HBC=∠HDC;

2)判斷DHB的形狀,并證明你的結論;

3)若DH1,AH7,則BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:大家知道是無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分。又例如:因為,,所以的整數(shù)部分為2,小數(shù)部分為,請解答下列問題:

(1) 如果的小數(shù)部分為a,的整數(shù)部分為b,求的值;

(2)已知,其中x是整數(shù),且,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點A(2,0),B(6,2),C(6,6),

反比例函數(shù)y1=(x0)的圖象過點D,點P是一次函數(shù)y2=kx+3﹣3k(k0)的圖象與該反比例函數(shù)圖象的一個公共點.

(1)若一次函數(shù)y2=kx+3﹣3k的圖象必經過點E,則E點坐標為______;

(2)對于一次函數(shù)y2=kx+3﹣3k(k0),當yx的增大而增大時,點P橫坐標a的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,∠BAC=90°,AB=AC.MN是過點A的直線,BDMN D,CEMNE.

1)求證:BD=AE.

2)若將MN繞點A旋轉,使MNBC相交于點G(如圖2),其他條件不變,求證:BD=AE.

3)在(2)的情況下,若CE的延長線過AB的中點F(如圖3),連接GF,求證:∠AFE=BFG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,ADBC邊上的高,EAC的中點,PAD上的一個動點,當PCPE的和最小時,∠CPE的度數(shù)是_____________

查看答案和解析>>

同步練習冊答案