【題目】閱讀材料:大家知道是無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分。又例如:因為,即,所以的整數(shù)部分為2,小數(shù)部分為,請解答下列問題:
(1) 如果的小數(shù)部分為a,的整數(shù)部分為b,求的值;
(2)已知,其中x是整數(shù),且,求的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,以點B為圓心,適當長為半徑的畫弧,分別交BA,BC于點M、N;再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線BP交AC于點D,則下列說法中不正確的是()
A. BP是∠ABC的平分線B. AD=BDC. D. CD=BD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知m,n(m<n)是關于x的方程(x–a)(x–b)=2的兩根,若a<b,則下列判斷正確的是
A. a<m<b<n B. m<a<n<b
C. a<m<n<d D. m<a<b<n
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題背景)
在平行四邊形ABCD中,∠BAD=120°,AD=nAB,現(xiàn)將一塊含60°的直角三角板(如圖)放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),其60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB、AD于點E、F(不包括線段的端點).
(發(fā)現(xiàn))
如圖1,當n=1時,易證得AE+AF=AC;
(類比)
如圖2,過點C作CH⊥AD于點H,
(1)當n=2時,求證:AE=2FH;
(2)當n=3時,試探究AE+3AF與AC之間的等量關系式;
(延伸)
將60°角的頂點移動到平行四邊形ABCD對角線AC上的任意點Q,其余條件均不變,試探究:AE、AF、AQ之間的等量關系式(請直接寫出結(jié)論).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:Rt△ABE≌Rt△CBF
(2)若∠AEC=105°,求∠BCF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知等腰三角形的一邊長等于8cm,一邊長等于9cm,求它的周長;
(2)等腰三角形的一邊長等于6cm,周長等于28cm,求其他兩邊的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知∠ABC和∠ACB的平分線相交于點O,∠BAC=80°,則∠BOC的度數(shù)是( )
A.130°B.120°C.100°D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點,AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請判斷△ADE是什么三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ ABC 中,∠BAC=120°,AB=AC=4,AD⊥BC,延長AD至點E,使得AE=2AD,連接BE.
(1)求證:△ ABE 為等邊三角形;
(2)將一塊含 60°角的直角三角板 PMN 如圖放置,其中點 P 與點 E 重合,且∠NEM=60°,邊 NE 與 AB 交于點 G,邊 ME 與 AC 交于點 F. 求證:BG=AF。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com