已知關(guān)于x的方程x2+(m+2)x+2m﹣1=0.
(1)求證:方程有兩個不相等的實數(shù)根.
(2)當m為何值時,方程的兩根互為相反數(shù)?并求出此時方程的解.
【考點】根的判別式;根與系數(shù)的關(guān)系.
【專題】計算題.
【分析】(1)先計算出△=(m+2)2﹣4(2m﹣1),變形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,則△>0,然后根據(jù)△的意義得到方程有兩個不相等的實數(shù)根;
(2)利用根與系數(shù)的關(guān)系得到x1+x2=0,即m+2=0,解得m=﹣2,則原方程化為x2﹣5=0,然后利用直接開平方法求解.
【解答】(1)證明:△=(m+2)2﹣4(2m﹣1)
=m2﹣4m+8
=(m﹣2)2+4,
∵(m﹣2)2≥0,
∴(m﹣2)2+4>0,
即△>0,
所以方程有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩個根為x1,x2,由題意得:
x1+x2=0,即m+2=0,解得m=﹣2,
當m=﹣2時,方程兩根互為相反數(shù),
當m=﹣2時,原方程為x2﹣5=0,
解得:x1=﹣,x2=.
【點評】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了解一元二次方程和根與系數(shù)的關(guān)系.
科目:初中數(shù)學 來源: 題型:
如圖,A、B分別為y=x2上兩點,且線段AB⊥y軸,若AB=6,則直線AB的表達式為( )
A.y=3 B.y=6 C.y=9 D.y=36
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知二次函數(shù)y=x2﹣2mx+m2﹣1(m≠0)的圖象經(jīng)過點(1,0).
(1)求二次函數(shù)的解析式;
(2)該拋物線與y軸交于點C,頂點為D,求C,D兩點的坐標;
(3)x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,將4×3的網(wǎng)格圖剪去5個小正方形后,圖中還剩下7個小正方形,為了使余下的部分(小正方形之間至少要有一條邊相連)恰好能折成一個正方體,需要再剪去1個小正方形,則應(yīng)剪去的小正方形的編號是( )
A.7 B.6 C.5 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖一,某水渠的橫斷面是等腰梯形,已知其斜坡AD和BC的坡度為1︰0.6,現(xiàn)測得放水前的水面寬EF為1.2米,當水閘放水后,水渠內(nèi)水面寬GH為2.1米.求放水后水面上升的高度是 ……………………………………………………………………( )
(A)0.55; (B)0.8;
(C)0.6; (D)0.75.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com