【題目】把直尺、三角尺和圓形螺母按如圖所示放置于桌面上,∠CAB=60°,若量出AD=6cm,則圓形螺母的外直徑是___.
【答案】12
【解析】
設(shè)圓形螺母的圓心為O,連接OD、OE、OA,如圖,根據(jù)切線的性質(zhì)得到AO為∠DAB的角平分線,OD⊥AC,OE⊥AB,又因?yàn)椤螩AB=60°,以此得到∠OAE=∠OAD=∠DAB=60°,根據(jù)三角函數(shù)定義求出OD的長(zhǎng),從而的出直徑即可.
如圖,設(shè)圓形螺母圓心為O,與AB相切于E,連接OD。OE、OA,
∵AD、AB分別是圓O的切線
∴AO為∠DAB的角平分線,OD⊥AC,OE⊥AB
又∵∠CAB=60°
∴∠OAE=∠OAD=∠DAB=60°
在Rt△AOD中,∠OAD=60°,AD=6cm
∴tan∠OAD=tan60°=
即
∴OD=
∴圓形螺母直徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D在AB上,以AD為直徑的⊙O與BC相交于點(diǎn)E,與AC相交于點(diǎn)F,AE平分∠BAC.
(1)求證:BC是⊙O的切線.
(2)若∠EAB=30°,OD=3,求圖中陰影部分的面積.
(3)若AD=5,AE=4,求AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測(cè)量它在地面上的影子,第一次是陽(yáng)光與地面成60°角時(shí),第二次是陽(yáng)光與地面成30°角時(shí),兩次測(cè)量的影長(zhǎng)相差8米,則樹高_____________米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+c過(guò)點(diǎn)(﹣2,2),(4,5),過(guò)定點(diǎn)F(0,2)的直線l:y=kx+2與拋物線交于A、B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),過(guò)點(diǎn)B作x軸的垂線,垂足為C.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)B在拋物線上運(yùn)動(dòng)時(shí),判斷線段BF與BC的數(shù)量關(guān)系 (>、<、=),并證明你的判斷;
(3)P為y軸上一點(diǎn),以B、C、F、P為頂點(diǎn)的四邊形是菱形,設(shè)點(diǎn)P(0,m),求自然數(shù)m的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著中國(guó)經(jīng)濟(jì)的快速發(fā)展以及科技水平的飛速提高,中國(guó)高鐵正迅速崛起.高鐵大大縮短了時(shí)空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達(dá)高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)間連線為邊的三角形稱為“格點(diǎn)三角形”,圖中△ABC就是格點(diǎn)三角形,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C的坐標(biāo)為(0,﹣1).
(1)在如圖的方格紙中把△ABC以點(diǎn)O為位似中心擴(kuò)大,使放大前后的位似比為1:2,畫出△A1B1C1(△ABC與△A1B1C1在位似中心O點(diǎn)的兩側(cè),A,B,C的對(duì)應(yīng)點(diǎn)分別是A1,B1,C1).
(2)利用本題方格紙標(biāo)出△A1B1C1外接圓的圓心P, P點(diǎn)坐標(biāo)是 .
(3)在(2)中的條件下,求⊙P中劣弧A1B1的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn)(1,0),(-3,0),(0,).
(1)求該二次函數(shù)的解析式;
(2)若反比例函數(shù)圖像與二次函數(shù)的圖像在第一象限內(nèi)交于點(diǎn), 落在兩個(gè)相鄰的正整數(shù)之間,請(qǐng)寫出這兩個(gè)相鄰的正整數(shù);
(3)若反比例函數(shù)的圖像與二次函數(shù)的圖像在第一象限內(nèi)的交點(diǎn)為A,點(diǎn)A的橫坐標(biāo)為滿足,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是BC的中點(diǎn),連接DE,過(guò)點(diǎn)A作AG⊥ED交DE于點(diǎn)F,交CD于點(diǎn)G.
(1)證明:△ADG≌△DCE;(2)連接BF,證明:AB=FB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,于點(diǎn),于點(diǎn),為邊的中點(diǎn),連結(jié),,則下列結(jié)論:①②③為等邊三角形④若,則,則正確結(jié)論是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com