【題目】解方程:

1x2-7x+6=0

23xx-1=2-2x;

3x28x10.

【答案】1x1=6,x2=123x1=4+,x2=4-

【解析】

1)利用因式分解法解x2-7x+6=0,即可得到答案.

2)先移項(xiàng),再把后兩項(xiàng)提公因式2,最后用因式分解法解方程即可;

3)利用配方法對x28x10進(jìn)行求解即可.

1)由x2-7x+6=0得到(x-6)(x-1=0,x-6=0x-1=0,所以x1=6x2=1

23x(x1)22x

3x(x1)+2x-2=0

3xx-1+2x-1=0

x-1)(3x+2=0

x-1=03x+2=0

解得x11,x2=-

3)∵x2-8x=1,
x2-8x+16=1+16,即(x-42=17,
x-4=±
x=4±;
x1=4+,x2=4-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將函數(shù)y=x22+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A1,m),B4,n)平移后的對應(yīng)點(diǎn)分別為點(diǎn)A'B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2m+1)x+m2﹣4=0有兩個(gè)不相等的實(shí)數(shù)根

1)求實(shí)數(shù)m的取值范圍;

2)若兩個(gè)實(shí)數(shù)根的平方和等于15,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A1,﹣4),且過點(diǎn)B3,0).

1)求該二次函數(shù)的解析式;

2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上,將△ABC繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到△AB′C′

(1)在正方形網(wǎng)格中,畫出△AB′C′

(2)分別畫出旋轉(zhuǎn)過程中,點(diǎn)B點(diǎn)C經(jīng)過的路徑;

(3)計(jì)算線段BC在變換到B′C′的過程中掃過區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD=8,EBC邊上的一點(diǎn),將矩形ABCD沿折痕AE折疊,使得頂點(diǎn)B落在CD邊上的點(diǎn)P處,PC=4(如圖1).

1)求AB的長;

2)擦去折痕AE,連結(jié)PB,設(shè)M是線段PA的一個(gè)動點(diǎn)(點(diǎn)M與點(diǎn)P、A不重合).NAB沿長線上的一個(gè)動點(diǎn),并且滿足PM=BN.過點(diǎn)MMH⊥PB,垂足為H,連結(jié)MNPB于點(diǎn)F(如圖2).

MPA的中點(diǎn),求MH的長;

試問當(dāng)點(diǎn)M、N在移動過程中,線段FH的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段FH的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:

(1)每千克核桃應(yīng)降價(jià)多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價(jià)的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFC中,點(diǎn)DCG上,BC1CE3,HAF的中點(diǎn),EHCF交于點(diǎn)O.則HE的長為(  )

A. 2B. C. 2D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是⊙O的內(nèi)接正三角形,P為弧BC上一點(diǎn)(與點(diǎn)B、C不重合),

1)如果點(diǎn)P是弧BC的中點(diǎn),求證:PB+PC=PA;

2)如果點(diǎn)P在弧BC上移動時(shí),(1)的結(jié)論還成立嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案