【題目】如圖,在Rt△ABC中,∠ACB=90°,點D在AB上,以AD為直徑的⊙O與邊BC相切于點E,與邊AC相交于點G,且,連接GO并延長交⊙O于點F,連接BF.
(1)求證:AO=AG;
(2)求證:BF是⊙O的切線;
(3)若BD=6,求圖形中陰影部分的面積.
【答案】(1)見解析;(2)見解析;(3)S陰影=-6π.
【解析】
(1)先利用切線的性質(zhì)判斷出,再用平行線結(jié)合弧相等判斷出,即可得出結(jié)論;
(2)先判斷出是等邊三角形,進(jìn)而得出,進(jìn)而判斷出,得出,得出,即可得出結(jié)論;
(3)先判斷出,進(jìn)而得出,建立方程,繼而求出,,,,再判斷出是等邊三角形,得出,進(jìn)而利用根據(jù)勾股定理求出,即可得出結(jié)論.
解:(1)證明:如圖1,連接,
與相切于點,
,
,
,
,
,
,
,
,
;
(2)由(1)知,,
,
,
是等邊三角形,
,
,
由(1)知,,
,
,
,,
,
,
,
是的半徑,
是的切線;
(3)如圖2,連接,
,
,
,
設(shè)的半徑為,
,
,
,
,,
,,
由(1)知,,
,
是等邊三角形,
,
根據(jù)勾股定理得,,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個摩天輪,它共有8個座艙,依次標(biāo)為1~8號,摩天輪中心O的離地高度為50米,摩天輪中心到各座艙中心均相距25米,在運(yùn)行過程中,當(dāng)1號艙比3號艙高5米時,1號艙的離地高度為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD的一邊BC在直角坐標(biāo)系中x軸上,折疊邊AD,使點D落在x軸上點F處,折痕為AE,已知AB=8,AD=10,并設(shè)點B坐標(biāo)為(m,0),其中m<0.
(1)求點E、F的坐標(biāo)(用含m的式子表示);
(2)連接OA,若△OAF是等腰三角形,求m的值;
(3)如圖2,設(shè)拋物線y=a(x﹣m+6)2+h經(jīng)過A、E兩點,其頂點為M,連接AM,若∠OAM=90°,求a、h、m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子1張或椅子4把,現(xiàn)計劃用120塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗),設(shè)用x塊板材做桌子,用y塊板材做椅子,則下列方程組正確的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.
(1)猜想ED與⊙O的位置關(guān)系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線的開口向下與軸交于點和點,與軸交于點,點是拋物線上一個動點(不與點重合)
(1)求拋物線的解析式;
(2)當(dāng)點是拋物線上一個動點,若的面積為12,求點的坐標(biāo);
(3)如圖2,拋物線的頂點為,在拋物線上是否存在點,使得,若存在請直接寫出點的坐標(biāo);若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c交x軸于A(-4,0)、B(2,0),在y軸上有一點 E(0,-2),連接AE.
(1)求二次函數(shù)的表達(dá)式;
(2)點D是第二象限內(nèi)的拋物線上一動點.若tan∠AED=,求此時點D坐標(biāo);
(3)連接AC,點P是線段CA上的動點,連接OP,把線段PO繞著點P順時針旋轉(zhuǎn)90°至PQ,點Q是點O的對應(yīng)點.當(dāng)動點P從點C運(yùn)動到點A時,判斷動點Q的軌跡并求動點Q所經(jīng)過的路徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com