【題目】如圖,直線y=kx+2與x軸、y軸分別交于A、B兩點(diǎn),OA:OB=.以線段AB為邊在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.
(1)求點(diǎn)A的坐標(biāo)和k的值;
(2)求點(diǎn)C坐標(biāo);
(3)直線y=x在第一象限內(nèi)的圖象上是否存在點(diǎn)P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點(diǎn)P坐標(biāo);如果不存在,請說明理由.
【答案】(1)A(﹣1,0),k=2;(2)C(﹣3,1);(3)P坐標(biāo)為(2,1).
【解析】
(1)對于直線y=kx+2,令x=0求出y的值,確定出B坐標(biāo),得到OB的長,根據(jù)OA與OB比值求出OA的長,確定出A坐標(biāo),代入直線方程即可求出k的值;
(2)過C作CM垂直于x軸,利用同角的余角相等得到一對角相等,再由一對直角相等,以及AC=AB,利用AAS得到三角形ACM與三角形BAO全等,由全等三角形對應(yīng)邊相等得到CM=OA,AM=OB,由AM+OA求出OM的長,即可確定出C坐標(biāo);
(3)假設(shè)存在點(diǎn)P使得△ABP的面積與△ABC的面積相等,在直線y= x第一象限上取一點(diǎn)P,連接BP,AP,設(shè)點(diǎn)P(m,m),由三角形ABO面積+三角形BPO面積-三角形AOP面積表示出三角形ABP面積,求出三角形AOB面積,兩者相等求出m的值,即可確定出P坐標(biāo).
(1)對于直線y=kx+2,令x=0,得到y=2,即B(0,2),OB=2,
∵OA:OB=,∴OA=1,即A(﹣1,0),
將x=﹣1,y=0代入直線解析式得:0=﹣k+2,即k=2;
(2)過C作CM⊥x軸,可得∠AMC=∠BOA=90°,
∴∠ACM+∠CAM=90°,
∵△ABC為等腰直角三角形,即∠BAC=90°,AC=BA,
∴∠CAM+∠BAO=90°,
∴∠ACM=∠BAO,
在△CAM和△ABO中,
,
∴△CAM≌△ABO(AAS),
∴AM=OB=2,CM=OA=1,即OM=OA+AM=1+2=3,
∴C(﹣3,1);
(3)假設(shè)存在點(diǎn)P使得△ABP的面積與△ABC的面積相等,在直線y=x第一象限上取一點(diǎn)P,連接BP,AP,
設(shè)點(diǎn)P(m,m),
∴S△ABP=S△ABO+S△BPO﹣S△AOP=1+m﹣m=1+m,而S△ABC=ABAC=AB2=(12+22)=,
可得1+m=,
解得:m=2,
則P坐標(biāo)為(2,1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩塊面積相同的試驗(yàn)田,分別收獲蔬菜900kg和1500kg,已知第一塊試驗(yàn)田每畝收獲蔬菜比第二塊少300kg,求第一塊試驗(yàn)田每畝收獲蔬菜多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為10,圓O分別與AB、AD相切于E、F兩點(diǎn),且與BG相切于G點(diǎn).若AO=5,且圓O的半徑為3,則BG的長度為何?( 。
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的直角頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),且∠B=60°,點(diǎn)P為斜邊OB上的一個動點(diǎn),則PA+PC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
⑴.在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1.
⑵.寫出點(diǎn)A1,B1,C1的坐標(biāo)(直接寫出答案).
A1 B1 C1 ;
⑶.△A1B1C1的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的邊BC上一點(diǎn),AB=4,AD=2,∠DAC=∠B.如果△ABD的面積為15,那么△ACD的面積為( )
A.15
B.10
C.
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一列按一定順序和規(guī)律排列的數(shù):
第一個數(shù)是 ;
第二個數(shù)是 ;
第三個數(shù)是 ;
…
對任何正整數(shù)n,第n個數(shù)與第(n+1)個數(shù)的和等于 .
(1)經(jīng)過探究,我們發(fā)現(xiàn):
設(shè)這列數(shù)的第5個數(shù)為a,那么 , , ,哪個正確?
請你直接寫出正確的結(jié)論;
(2)請你觀察第1個數(shù)、第2個數(shù)、第3個數(shù),猜想這列數(shù)的第n個數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個數(shù)與第(n+1)個數(shù)的和等于 ”;
(3)設(shè)M表示 , , ,…, ,這2016個數(shù)的和,即 ,
求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D,F(xiàn)分別在AC,BC邊上,設(shè)CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com