【題目】如圖,矩形ABCD中,AB=2,BC=4,P為矩形邊上的一個(gè)動(dòng)點(diǎn),運(yùn)動(dòng)路線是A→B→C→D→A,設(shè)P點(diǎn)經(jīng)過(guò)的路程為x,以A,P,B為頂點(diǎn)的三角形面積為y,則選項(xiàng)圖象能大致反映yx的函數(shù)關(guān)系的是( 。

A. B. C. D.

【答案】B

【解析】

根據(jù)題意可以分別表示出各段的函數(shù)解析式,從而可以根據(jù)各段對(duì)應(yīng)的函數(shù)圖象判斷選項(xiàng)的正誤即可.

由題意可得,

點(diǎn)PA→B的過(guò)程中,y=0(0≤x≤2),故選項(xiàng)C錯(cuò)誤,

點(diǎn)PB→C的過(guò)程中,y= 2(x-2)=x-2(2<x≤6),故選項(xiàng)A錯(cuò)誤

點(diǎn)PC→D的過(guò)程中,y= 24=4(6<x≤8),故選項(xiàng)D錯(cuò)誤,

點(diǎn)PD→A的過(guò)程中,y= 2(12-x)=12-x(8<x12),

由以上各段函數(shù)解析式可知,選項(xiàng)B正確,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E是矩形ABCD的邊CB的中點(diǎn),AF⊥DE于點(diǎn)F,AB=3,AD=4.求點(diǎn)A到直線DE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中真命題的個(gè)數(shù)( 。

(1)已知直角三角形面積為4,兩直角邊的比為1:2,則它的斜邊為5;

(2)直角三角形的最大邊長(zhǎng)為26,最短邊長(zhǎng)為10,則另一邊長(zhǎng)為24;

(3)在直角三角形中,兩條直角邊長(zhǎng)為n2﹣12n,則斜邊長(zhǎng)為n2+1;

(4)等腰三角形面積為12,底邊上的底為4,則腰長(zhǎng)為5.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,將△APB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一定角度后,可得到△CQB.
(1)求點(diǎn)P與點(diǎn)Q之間的距離;
(2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AEBF交于點(diǎn)G.下列結(jié)論錯(cuò)誤的是(  )

A. AE=BF B. ∠DAE=∠BFC

C. ∠AEB+∠BFC=90° D. AE⊥BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M在y軸上運(yùn)動(dòng).

(1)求直線AB的函數(shù)解析式;

(2)動(dòng)點(diǎn)M在y軸上運(yùn)動(dòng),使MA+MB的值最小,求點(diǎn)M的坐標(biāo);

(3)在y軸的負(fù)半軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知二次函數(shù)y=x2+bx+c的圖象與x 軸交于A(﹣1,0)、B(3,0)兩點(diǎn),與y 軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱軸為直線l.

(1)求該二次函數(shù)的表達(dá)式;
(2)若點(diǎn)E 是對(duì)稱軸l 右側(cè)拋物線上一點(diǎn),且SADE=2SAOC , 求點(diǎn)E 的坐標(biāo);
(3)如圖2,連接DC 并延長(zhǎng)交x 軸于點(diǎn)F,設(shè)P 為線段BF 上一動(dòng)點(diǎn)(不與B、F 重合),過(guò)點(diǎn)P 作PQ∥BD 交直線BC 于點(diǎn)Q,將直線PQ 繞點(diǎn)P 沿順時(shí)針?lè)较蛐D(zhuǎn)45°后,所得的直線交DF 于點(diǎn)R,連接QR.請(qǐng)直接寫(xiě)出當(dāng)△PQR 與△PFR 相似時(shí)點(diǎn)P 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,D、E分別是BC、AC上的點(diǎn),BD=CE,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某土產(chǎn)公司組織20輛汽車(chē)裝運(yùn)甲、乙、丙三種土特產(chǎn)共120噸去外地銷(xiāo)售按計(jì)劃20輛車(chē)都要裝運(yùn),每輛汽車(chē)只能裝運(yùn)同一種土特產(chǎn),且必須裝滿,根據(jù)下表提供的信息,解答以下問(wèn)題

土特產(chǎn)種類(lèi)

每輛汽車(chē)運(yùn)載量(噸)

8

6

5

每噸土特產(chǎn)獲利(百元)

12

16

10

(1)設(shè)裝運(yùn)甲種土特產(chǎn)的車(chē)輛數(shù)為x,裝運(yùn)乙種土特產(chǎn)的車(chē)輛數(shù)為y,求y與x之間的函數(shù)關(guān)系式;

(2)如果裝運(yùn)每種土特產(chǎn)的車(chē)輛都不少于3輛,那么車(chē)輛的安排方案有幾種?并寫(xiě)出每種安排方案;

(3)若要使此次銷(xiāo)售獲利最大,應(yīng)采用(2)中哪種安排方案?并求出最大利潤(rùn)的值

查看答案和解析>>

同步練習(xí)冊(cè)答案