4、如下圖所示,則下列四種說(shuō)法中正確的是( 。
分析:A、C、D可以直接根據(jù)條形的高低來(lái)判斷,B需要從圖中獲取具體的數(shù)值,再判斷七(3)班男生是女生的幾倍.也可用排除法,排除A、C、D.
解答:解:
A、錯(cuò)誤,從圖中可以看出:七(1)班學(xué)生最少;
C、錯(cuò)誤,七(4)班女生比男生少;
D、錯(cuò)誤,七(2)班和七(4)班女生一樣多,但男生七(4)班學(xué)生較多;
B、正確,七(3)班男生20人,是女生10人的2倍.
故選B.
點(diǎn)評(píng):從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵,條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料并解答問(wèn)題:
我國(guó)是最早了解和應(yīng)用勾股定理的國(guó)家之一,古代印度、希臘、阿拉伯等許多國(guó)家也都很重視對(duì)勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱(chēng)為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱(chēng)為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長(zhǎng)的△ABC是直角三角形;
(2)請(qǐng)根據(jù)方法1和方法2按規(guī)律填寫(xiě)下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹(shù),使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹(shù),各邊上相鄰兩棵樹(shù)之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹(shù),且每個(gè)三角形的各邊長(zhǎng)之比為5:12:13,那么這四個(gè)直角三角形的邊長(zhǎng)共需植樹(shù)
 
棵.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東深圳北環(huán)中學(xué)七年級(jí)下學(xué)期期中聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:單選題

如下圖,用四個(gè)完全一樣的長(zhǎng)方形和一個(gè)小正方形拼成如圖所示的大正方形,已知大正方形的面積是196,小正方形的面積是4,若用表示長(zhǎng)方形的長(zhǎng)和寬,則下列關(guān)系式中不正確的是

A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如下圖所示,則下列四種說(shuō)法中正確的是


  1. A.
    七(2)班學(xué)生最少
  2. B.
    七(3)班男生是女生的2倍
  3. C.
    七(4)班女生比男生多
  4. D.
    七(2)班和七(4)班學(xué)生一樣多

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我國(guó)是最早了解和應(yīng)用勾股定理的國(guó)家之一,古代印度、希臘、阿拉伯等許多國(guó)家也都很重視對(duì)勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱(chēng)為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱(chēng)為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=數(shù)學(xué)公式(m2-1)和c=數(shù)學(xué)公式(m2+1)是勾股數(shù).
方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長(zhǎng)的△ABC是直角三角形;
(2)請(qǐng)根據(jù)方法1和方法2按規(guī)律填寫(xiě)下列表格:

(3)某園林管理處要在一塊綠地上植樹(shù),使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹(shù),各邊上相鄰兩棵樹(shù)之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹(shù),且每個(gè)三角形的各邊長(zhǎng)之比為5:12:13,那么這四個(gè)直角三角形的邊長(zhǎng)共需植樹(shù)______棵.

查看答案和解析>>

同步練習(xí)冊(cè)答案