【題目】已知直線l1y=x-3x軸,y軸分別交于點A和點B

1)求點A和點B的坐標(biāo);

2)將直線l1向上平移6個單位后得到直線l2,求直線l2的函數(shù)解析式;

3)設(shè)直線l2x軸的交點為M,則MAB的面積是______

【答案】1A (6,0),B (0,3);(2y=x+3;(318.

【解析】

1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案;

2)根據(jù)圖象平移的規(guī)律:左加右減,上加下減,可得答案;

3)根據(jù)解方程組,可得交點坐標(biāo),根據(jù)三角形的面積公式,可得答案.

(1)當(dāng)y=0,0=x3,解得:x=6,所以點A的坐標(biāo)為(6,0);

當(dāng)x=0,y=3,所以點B的坐標(biāo)為(0,3);

(2)將直線l1向上平移6個單位后得到直線l2,直線l2的函數(shù)解析式為:y=x3+6=x+3;

(3)當(dāng)y=0,0=x+3,解得:x=6,所以點M的坐標(biāo)為(6,0),

所以△MAB的面積=×12×3=18

故答案為:18.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,點上,點、點上,的角平分線于點,過點于點,己知,則的度數(shù)為(

A. 26°B. 32°C. 36°D. 42°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD△ACE,F(xiàn)AB的中點,DE,AB相交于點G,若∠BAC=30°,下列結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號是( 。

A. ②④ B. ①③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖1ΔABC是等邊三角形,DE是中位線,F是線段BC延長線上一點,且CF=AE,連接BE,EF.

1 2

(1)求證:BE=EF;

(2)若將DE從中位線的位置向上平移,使點DE分別在線段AB、AC(E與點A不重合),其他條件不變,如圖2,則(1)題中的結(jié)論是否成立?若成立,請證明;若不成立.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,EAD的中點,EF⊥ACCB的延長線于點F

1DEBF相等嗎?請說明理由.

2)連接AF、BE,四邊形AFBE是平行四邊形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在四邊形ABCD中,∠Ax°,∠Cy°x180°,y180°.

1)∠ABC+∠ADC °.(用含xy的代數(shù)式表示)

2)如圖1,若x=y=90°,DE平分∠ADC,BF平分與∠ABC相鄰的外角,請寫出DEBF的位置關(guān)系,并說明理由.

3)如圖2,∠DFB為四邊形ABCD的∠ABC、∠ADC相鄰的外角平分線所在直線構(gòu)成的銳角,

①當(dāng)xy時,若x+y=140°,∠DFB=30°,試求x、y

②小明在作圖時,發(fā)現(xiàn)∠DFB不一定存在,請直接指出x、y滿足什么條件時,∠DFB不存在.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有A、B兩種型號的客車共20,它們的載客量、每天的租金如表所示.已知在20輛客車都坐滿的情況下,共載客720.

A型號客車

B型號客車

載客量(/)

45

30

租金(/)

600

450

(1)A、B兩種型號的客車各有多少輛?

(2)某中學(xué)計劃租用A、B兩種型號的客車共8,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學(xué)租車的總費(fèi)用不超過4600.

①求最多能租用多少輛A型號客車?

②若七年級的師生共有305,請寫出所有可能的租車方案,并確定最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點O沿x軸向左平移2個單位長度得到點A,過點Ay軸的平行線交反比例函數(shù)的圖象于點BAB=

1)求反比例函數(shù)的解析式;

2)若P, )、Q, )是該反比例函數(shù)圖象上的兩點,且時, ,指出點P、Q各位于哪個象限?并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為提倡節(jié)約用水,準(zhǔn)備實行自來水階梯計算方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費(fèi),為了更好地決策,自來水公司隨機(jī)抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計圖,(每組數(shù)據(jù)包括在右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解答下列問題:

1)此次抽樣調(diào)查的樣本容量是___________

2)補(bǔ)全頻數(shù)分布直方圖,求扇形圖中“15噸~20部分的圓心角的度數(shù).

3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)10萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

同步練習(xí)冊答案