【題目】折紙是一項有趣的活動,在折紙過程中,我們可以通過研究圖形的性質(zhì)和運(yùn)動,確定圖形位置等,進(jìn)一步發(fā)展空間觀念. 今天,就讓我們帶著數(shù)學(xué)的眼光來玩一玩折紙.
實踐操作
如圖1,將矩形紙片ABCD沿對角線AC翻折,使點落在矩形ABCD所在平面內(nèi),C和AD相交于點E,連接D.
解決問題
(1)在圖1中,①D和AC的位置關(guān)系是_____;②將△AEC剪下后展開,得到的圖形是____;
(2)若圖1中的矩形變?yōu)槠叫兴倪呅螘r(AB≠BC),如圖2所示,結(jié)論①和結(jié)論②是否成立,若成立,請?zhí)暨x其中的一個結(jié)論加以證明;若不成立,請說明理由;
拓展應(yīng)用
(3)在圖2中,若∠B=30o,AB=,當(dāng)A⊥AD時,BC的長度為_____.
【答案】(1) BD′∥AC,菱形;(2)成立,理由見解析;(3)4或6或8或12.
【解析】
(1)①根據(jù)內(nèi)錯角相等兩直線平行即可判斷;
②根據(jù)菱形的判定方法即可解決問題;
(2)只要證明AE=EC,即可證明結(jié)論②成立;只要證明∠ADB′=∠DAC,即可推出B′D∥AC;
(3)先證得四邊形ACB′D是等腰梯形,分四種情形分別討論求解即可解決問題;
解:(1)①BD′∥AC.②將△AEC剪下后展開,得到的圖形是菱形;
故答案為BD′∥AC,菱形;
(2)①選擇②證明如下:
如圖2,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAC=∠ACB,
∵將△ABC沿AC翻折至△AB′C,
∴∠ACB′=∠ACB,
∴∠DAC=∠ACB′,
∴AE=CE,
∴△AEC是等腰三角形;
∴將△AEC剪下后展開,得到的圖形四邊相等,
∴將△AEC剪下后展開,得到的圖形四邊是菱形.
②選擇①證明如下,
∵四邊形ABCD是平行四邊形,
∴AD=BC,
∵將△ABC沿AC翻折至△AB′C,
∵B′C=BC,
∴B′C=AD,
∴B′E=DE,
∴∠CB′D=∠ADB′,
∵∠AEC=∠B′ED,∠ACB′=∠CAD
∴∠ADB′=∠DAC,
∴B′D∥AC.
(3)∵AD=BC,BC=B′C,
∴AD=B′C,
∵AC∥B′D,
∴四邊形ACB′D是等腰梯形,
∵∠B=30°,∴∠AB′C=∠CDA=30°,
∵△AB′D是直角三角形,
當(dāng)∠B′AD=90°,AB>BC時,如圖3中,
設(shè)∠ADB′=∠CB′D=y,
∴∠AB′D=y-30°,
解得y=60°,
∴∠AB′D=y-30°=30°,
∵AB′=AB=4
∴BC=4,
當(dāng)∠ADB′=90°,AB>BC時,如圖4,
∵AD=BC,BC=B′C,
∴AD=B′C,
∵AC∥B′D,
∴四邊形ACB′D是等腰梯形,
∵∠ADB′=90°,
∴四邊形ACB′D是矩形,
∴∠ACB′=90°,
∴∠ACB=90°,
∵∠B=30°,AB=4
當(dāng)∠B′AD=90°,AB<BC時,如圖5,
∵AD=BC,BC=B′C,
∴AD=B′C,
∵AC∥B′D,∠B′AD=90°,
∴∠AB′C=30°,
∴AE=4,BE′=2AE=8,
∴AE=EC=4,
∴CB′=12,
當(dāng)∠AB′D=90°時,如圖6,
∵AD=BC,BC=B′C,
∴AD=B′C,
∵AC∥B′D,
∴四邊形ACDB′是平行四邊形,
∵∠AB′D=90°,
∴四邊形ACDB′是矩形,
∴∠BAC=90°,
∴已知當(dāng)BC的長為4或6或8或12時,△AB′D是直角三角形.
故答案為:4或6或8或12;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點P在線段CB的延長線上,連接PA,將線段PA繞點P順時針旋轉(zhuǎn)90°,得到線段PE,連接CE,過點E作EF⊥BC于H,與對角線AC交于點F.
(1)請根據(jù)題意補(bǔ)全圖形;
(2)求證:EH=FH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三(1)班50名學(xué)生需要參加體育“五選一”自選項目測試,小明根據(jù)班上學(xué)生所報自選項目的情況繪制了統(tǒng)計圖如下:
(1)補(bǔ)全條形統(tǒng)計圖;
(2)若將各自選項的人數(shù)所占比例繪制成扇形統(tǒng)計圖,求“三級蛙跳”對應(yīng)扇形的圓心角的度數(shù);
(3)在選報“推鉛球”的學(xué)生中,有3名男生,2名女生,為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行推鉛球測試,求所抽取的兩名學(xué)生中至少有一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點A,C的坐標(biāo)分別為A(﹣3,0),C(1,0),BC=AC
(1)求過點A,B的直線的函數(shù)表達(dá)式;
(2)在x軸上找一點D,連接DB,使得△ADB與△ABC相似(不包括全等),并求點D的坐標(biāo);
(3)在(2)的條件下,如P,Q分別是AB和AD上的動點,連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m,使得△APQ與△ADB相似?如存在,請求出m的值;如不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根.
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根滿足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于點. 點從點出發(fā),沿線段向點運(yùn)動,點從點出發(fā),沿線段向點運(yùn)動,兩點同時出發(fā),速度都為每秒1個單位長度,當(dāng)點運(yùn)動到時,兩點都停止. 設(shè)運(yùn)動時間為秒.
(1)求線段的長;
(2)當(dāng)為何值時,是直角三角形?
(3)是否存在某一時刻,使得分的面積為1:11?若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①;②;③;④其頂點坐標(biāo)為;⑤當(dāng)時,隨的增大而減小;⑥中,正確的有__________(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點.
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com