【題目】如圖,反比例函數(shù)y= (x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別與AB、BC相交于點D、E.若四邊形ODBE的面積為6,則k的值為________.
【答案】2
【解析】
設(shè)M點坐標為(a,b),而M點在反比例函數(shù)圖象上,則k=ab,即y=,由點M為矩形OABC對角線的交點,根據(jù)矩形的性質(zhì)易得A(2a,0),C(0,2b),B(2a,2b),利用坐標的表示方法得到D點的橫坐標為2a,E點的縱坐標為2b,而點D、點E在反比例函數(shù)y=的圖象上(即它們的橫縱坐標之積為ab),可得D點的縱坐標為b,E點的橫坐標為a,利用S矩形OABC=S△OAD+S△OCE+S四邊形ODBE,得到2a2b=2ab+2ba+6,求出ab,即可得到k的值.
設(shè)M點坐標為(a,b),則k=ab,即y=,
∵點M為矩形OABC對角線的交點,
∴A(2a,0),C(0,2b),B(2a,2b),
∴D點的橫坐標為2a,E點的縱坐標為2b,
又∵點D、點E在反比例函數(shù)y=的圖象上,
∴D點的縱坐標為b,E點的橫坐標為a,
∵S矩形OABC=S△OAD+S△OCE+S四邊形ODBE,
∴2a2b=2ab+2ba+6,
∴ab=2,
∴k=2.
故答案為2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABDC中,∠D=∠ABD=90°,點O為BD的中點,且OA⊥OC.
(1)求證:CO平分∠ACD;
(2)求證:AB+CD=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC外作射線AD,使得AD和AC在直線AB的兩側(cè),∠BAD=α(0°<α<180°),點B關(guān)于直線AD的對稱點為P,連接PB,PC.
(1)依題意補全圖1;
(2)在圖1中,求△BPC的度數(shù);
(3)直接寫出使得△PBC是等腰三角形的α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】城市的正北方向的處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為,是一條直達城的公路,從城發(fā)往城的班車速度為.
(1)當(dāng)班車從城出發(fā)開往城時,某人立即打開無線電收音機,班車行駛了的時候接收信號最強.此時,班車到發(fā)射塔的距離是多少千米?(離發(fā)射塔越近,信號越強)
(2)班車從城到城共行駛了,請你判斷到城后還能接收到信號嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B,C三點是同一個平面直角坐標系內(nèi)不同的三點,A點在坐標軸上,點A向左平移3個單位長度,再向上平移2個單位長度就到了B點;直線BC∥y軸,C點的橫坐標、縱坐標互為相反數(shù),且點B和點C到x軸的距離相等.則A點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當(dāng)y1>y2時,試比較x1與x2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象在第一象限相交于點A(1,-k+4).
(1)試確定這兩個函數(shù)的表達式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標,并求△A0B的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,
(1)畫出函數(shù)的圖象;
(2)填空:請寫出圖象與x軸的交點A(___,___)的坐標,與y軸交點B(___,__)的坐標;
(3)在(2)的條件下,求出△AOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com