【題目】觀察下列各式規(guī)律:① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;…;根據(jù)上面等式的規(guī)律:
(1)寫出第6個和第n個等式;
(2)證明你寫的第n個等式的正確性.
科目:初中數(shù)學 來源: 題型:
【題目】在某中學開展的“好書伴我成長”讀書活動中,為了解八年級320名學生讀書情況,隨機調(diào)查了八年級部分學生讀書的冊數(shù).根據(jù)調(diào)查結果繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關信息,解答下列問題:
(Ⅰ)本次接受調(diào)查的學生人數(shù)為_____________,圖①中m的值為______________;
(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)統(tǒng)計的樣本數(shù)據(jù),估計該校讀書超過3冊的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1 ,
其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠A=60°,∠C=75°,AB=8,D、E、F分別在AB、BC、CA上,則△DEF的周長最小值是____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線y=x2+x+3與x軸交于A、B兩點(點A在點B的右側),與y軸交于點C,過點C作x軸的平行線交拋物線于點P.連接AC.
(1)求點P的坐標及直線AC的解析式;
(2)如圖2,過點P作x軸的垂線,垂足為E,將線段OE繞點O逆時針旋轉得到OF,旋轉角為α(0°<α<90°),連接FA、FC.求AF+CF的最小值;
(3)如圖3,點M為線段OA上一點,以OM為邊在第一象限內(nèi)作正方形OMNG,當正方形OMNG的頂點N恰好落在線段AC上時,將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形O′MNG,當點M與點A重合時停止平移.設平移的距離為t,正方形O′MNG的邊MN與AC交于點R,連接O′P、O′R、PR,是否存在t的值,使△O′PR為直角三角形?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,E、F分別是邊CD、AD上動點,AE和BF交于點G.
(1)如圖(1),若E為邊CD的中點,AF=2FD,求AG的長.
(2)如圖(2),若點F在AD上從A向D運動,點E在DC上從D向C運動,兩點同時出發(fā),同時到達各自終點,求在運動過程中,點G運動的路徑長.
(3)如圖(3),若E、F分別是邊CD、AD上的中點,BD與AE交于點H,求∠FBD的正切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線交x軸于點和點A,交y軸負半軸于點,且.有下列結論:( )
①;②;③;④.其中,正確結論的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com