【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=x2+x+3與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,過點C作x軸的平行線交拋物線于點P.連接AC.
(1)求點P的坐標(biāo)及直線AC的解析式;
(2)如圖2,過點P作x軸的垂線,垂足為E,將線段OE繞點O逆時針旋轉(zhuǎn)得到OF,旋轉(zhuǎn)角為α(0°<α<90°),連接FA、FC.求AF+CF的最小值;
(3)如圖3,點M為線段OA上一點,以OM為邊在第一象限內(nèi)作正方形OMNG,當(dāng)正方形OMNG的頂點N恰好落在線段AC上時,將正方形OMNG沿x軸向右平移,記平移中的正方形OMNG為正方形O′MNG,當(dāng)點M與點A重合時停止平移.設(shè)平移的距離為t,正方形O′MNG的邊MN與AC交于點R,連接O′P、O′R、PR,是否存在t的值,使△O′PR為直角三角形?若存在,求出t的值;若不存在,請說明理由.
【答案】(1)P(2,3),yAC=﹣x+3;(2);(3)存在,t的值為﹣3或,理由見解析
【解析】
(1)由拋物線y=x2+x+3可求出點C,P,A的坐標(biāo),再用待定系數(shù)法,可求出直線AC的解析式;
(2)在OC上取點H(0,),連接HF,AH,求出AH的長度,證△HOF∽△FOC,推出HF=CF,由AF+CF=AF+HF≥AH,即可求解;
(3)先求出正方形的邊長,通過△ARM∽△ACO將相關(guān)線段用含t的代數(shù)式表示出來,再分三種情況進行討論:當(dāng)∠O'RP=90°時,當(dāng)∠PO'R=90°時,當(dāng)∠O'PR=90°時,分別構(gòu)造相似三角形,即可求出t的值,其中第三種情況不存在,舍去.
(1)在拋物線y=x2+x+3中,
當(dāng)x=0時,y=3,
∴C(0,3),
當(dāng)y=3時,x1=0,x2=2,
∴P(2,3),
當(dāng)y=0時,則x2+x+3=0,
解得:x1=﹣4,x2=6,
B(﹣4,0),A(6,0),
設(shè)直線AC的解析式為y=kx+3,
將A(6,0)代入,
得,k=﹣,
∴y=﹣x+3,
∴點P坐標(biāo)為P(2,3),直線AC的解析式為y=﹣x+3;
(2)在OC上取點H(0,),連接HF,AH,
則OH=,AH=,
∵,,且∠HOF=∠FOC,
∴△HOF∽△FOC,
∴,
∴HF=CF,
∴AF+CF=AF+HF≥AH=,
∴AF+CF的最小值為;
(3)∵正方形OMNG的頂點N恰好落在線段AC上,
∴GN=MN,
∴設(shè)N(a,a),
將點N代入直線AC解析式,
得,a=﹣a+3,
∴a=2,
∴正方形OMNG的邊長是2,
∵平移的距離為t,
∴平移后OM的長為t+2,
∴AM=6﹣(t+2)=4﹣t,
∵RM∥OC,
∴△ARM∽△ACO,
∴,
即,
∴RM=2﹣t,
如圖3﹣1,當(dāng)∠O'RP=90°時,延長RN交CP的延長線于Q,
∵∠PRQ+∠O'RM=90°,∠RO'M+∠O'RM=90°,
∴∠PRQ=∠RO'M,
又∵∠Q=∠O'MR=90°,
∴△PQR∽△RMO',
∴,
∵PQ=2+t-2=t,QR=3﹣RM=1+t,
∴,
解得,t1=﹣3﹣(舍去),t2=﹣3;
如圖3﹣2,當(dāng)∠PO'R=90°時,
∵∠PO'E+∠RO'M=90°,∠PO'E+∠EPO'=90°,
∴∠RO'M=∠EPO',
又∵∠PEO'=∠O'MR=90°,
∴△PEO'∽△O'MR,
∴,
即,
解得,t=;
如圖3﹣3,當(dāng)∠O'PR=90°時,延長O’G交CP于K,延長MN交CP的延長線于點T,
∵∠KPO'+∠TPR=90°,∠KO'P+∠KPO'=90°,
∴∠KO'P=∠TPR,
又∵∠O'KP=∠T=90°,
∴△KO'P∽△TPR,
∴,
即,
整理,得t2-t+3=0,
∵△=b2﹣4ac=﹣<0,
∴此方程無解,故不存在∠O'PR=90°的情況;
綜上所述,△O′PR為直角三角形時,t的值為﹣3或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個矩形紙片,將該紙片放置在平面直角坐標(biāo)系中,點,點,點P為邊上的動點.
(1)如圖①,經(jīng)過點O、P折疊該紙片,得點和折痕.當(dāng)點P的坐標(biāo)為時,求的度數(shù);
(2)如圖②,當(dāng)點P與點C重合時,經(jīng)過點O、P折疊紙片,使點B落在點的位置,與交于點M,求點M的坐標(biāo);
(3)過點P作直線,交于點Q,再取中點T,中點N,分別以,,,為折痕,依次折疊該紙片,折疊后點O的對應(yīng)點與點B的對應(yīng)點恰好重合,且落在線段上,A、C的對應(yīng)點也恰好重合,也落在線段上,求此時點P的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綠化某縣城與高速公路的連接路段中,需購買羅漢松、雪松兩種樹苗共400株,羅漢松樹苗每株60元,雪松樹苗每株70元.相關(guān)資料表明:羅漢松、雪松樹苗的成活率分別為70%,90%.
(1)若購買這兩種樹苗共用去26500元,則羅漢松、雪松樹苗各購買多少株?
(2)綠化工程來年一般都要將死樹補上新苗,現(xiàn)要使該兩種樹苗來年共補苗不多于80株,則羅漢松樹苗至多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,才能使購買樹苗的費用最低?請求出最低費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=2 ,AD=2,點P是對角線BD上一動點(不與B,D重合),連接AP,過點P作PE⊥AP,交DC于點E,
(1)求證:∠PAD=∠PEC;
(2)當(dāng)點P是BD的中點時,求DE的值;
(3)在點P運動過程中,當(dāng)DE= 時,求BP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校“心靈信箱”的設(shè)立,為師、生之間的溝通開設(shè)了一個書面交流的渠道.為了解九年級學(xué)生對“心靈信箱”開通兩年來的使用情況,某課題組對該校九年級全體學(xué)生進行了一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
根據(jù)圖表,解答以下問題:
(1)該校九年級學(xué)生共有 人;
(2)學(xué)生調(diào)查結(jié)果扇形統(tǒng)計圖中,扇形D的圓心角度數(shù)是 ;
(3)請你補充條形統(tǒng)計圖;
(4)根據(jù)調(diào)查結(jié)果可以推斷:兩年來,該校九年級學(xué)生通過“心靈信箱”投遞出的信件總數(shù)至少有 封.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式規(guī)律:① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;…;根據(jù)上面等式的規(guī)律:
(1)寫出第6個和第n個等式;
(2)證明你寫的第n個等式的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,正方形OABC如圖放置,反比例函數(shù)的圖像交AB于點D,交BC于點E,已知A(,0),∠DOE=30°,則k的值為( )
A.B.C.3D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年第七屆世界軍人運動會(7thCISMMilitaryWorldGames)于2019年10月18日至27日在中國武漢舉行,這是中國第一次承辦綜合性國際軍事賽事,也是繼北京奧運會后,中國舉辦的規(guī)模最大的國際體育盛會.某射擊運動員在一次訓(xùn)練中射擊了10次,成績?nèi)鐖D所示.下列結(jié)論中不正確的有( 。﹤
①眾數(shù)是8;②中位數(shù)是8;③平均數(shù)是8;④方差是1.6.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點叫做格點.四邊形的頂點在格點上,點是邊邊上的一點.請選擇適當(dāng)?shù)母顸c,用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由.
(1)①過作交邊于;
②過作于點;
③在上作線段
(2)在(1)的條件下,連,若為邊上的動點,在網(wǎng)格中求作一條線段等于的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com